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ABSTRACT
We consider a model for the flow of two immiscible and incompressible fluid phases
in a porous medium. A surfactant is dissolved in one of the fluid phases, and its con-
centration at the interface separating the two fluids can change the surface tension.
At the scale of pores, we assume that the flow is governed by the Navier-Stokes equa-
tions, while for the phase separation a Cahn-Hilliard phase-field model is adopted.
Using formal homogenization, we derive a two-scale model describing the averaged
behaviour of the system at the larger Darcy scale, where effective quantities are
found through local (cell) problems at the smaller pore scale. For this two-scale
model, we formulate a numerical scheme and present numerical results highlighting
the influence of the solute-dependent surface tension.

KEYWORDS
Two-phase flow in porous media; variable surface tension; phase-field model;
upscaling; homogenization;

1. Introduction

Many real-life applications of societal and technological relevance involve two-phase
flow in porous media. Examples in this sense are groundwater remediation, or oil
recovery from reservoirs. In such situations, the flow and transport processes take
place at the scale of pores, which is here considered the micro scale. Moreover, in
enhanced oil recovery [1,2], or applications involving e.g. microfluidics [3,4], or thin-
film flows [5,6], the surface tension between the two fluid phases is influenced by a
solute present in one or both fluids.

Since the porous medium consists of many pores and its geometry is highly complex,
numerical simulations using mathematical models defined at the pore scale would not
be feasible for practical purposes. Moreover, in most cases the primary interest is in
the averaged behaviour of the system at a much larger scale, namely the scale of
the application. This scale will be named from now one the Darcy scale, and can be
viewed as a macro scale in contrast to the pore scale. From this prospect, it would be
sufficient to use Darcy-scale models in the numerical simulation. However, when doing
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so, it becomes difficult to account properly for the processes at the pore scale. The
main challenges are finding the appropriate equations, parameters at the Darcy scale
and incorporating the pore-scale effects.

The starting point here is a pore-scale model, where two fluids occupy two disjoint
subdomains of the pore space. The fluids are assumed incompressible and immiscible,
and are separated by an interface that moves with the fluids, thus in an a-priori
unknown manner. Furthermore, a (soluble) surfactant species is present in one of
the fluid phases. Its concentration affects the surface tension and, consequently, it
influences the evolution of the fluid-fluid interface. As follows from the above, the pore-
scale model is involving a free boundary, and is defined in a complex domain, namely
the pore space of a porous medium. It includes two major components: the flow of the
two separate phases, and the diffusion and transport of the soluble surfactant.

When dealing with free-boundary problems, one can consider several mathemat-
ical modelling strategies. The simplest situation is when the domain is either one-
dimensional, or has a simple, rectangular or cylindrical structure, and the free bound-
ary is along the symmetry axis. In this case, one can identify the free boundary through
the distance to the domain boundary parts that are along the symmetry axis. Such a
strategy is adopted e.g. in [7,8]. In a similar context, but with a free boundary that
is transversal to the symmetry axis, parametric curves or surfaces have been used to
model two-phase flow in a pore [9,10].

More realistic situations can be considered when assuming periodically distributed
grains. In this case, the simplest approach is to assume a radial symmetry for the grain,
as well as for the free boundary. Then, the free boundary can be identified through the
radius of the curve/surface, as done e.g. in [11,12], where a model for water diffusion
into absorbent particles is proposed. If the radial symmetry cannot be assumed, level
sets can be used to identify the free boundary (see, e.g., [13–16]).

In the approaches mentioned above, the main difficulty in the analysis and numerical
simulation of such mathematical models is related to the free boundary. To avoid using
free boundaries and, consequently, working with time-dependent domains, the phase-
field approach offers a good alternative. In this case, the free boundary is approximated
by a diffuse interface region, and the model is hence defined in a fixed domain [17,18].
The phase-field indicator is a smooth approximation of, say, the characteristic function
of the domain occupied by one of the fluid phases. Then, a critical aspect is to guarantee
that, whenever the diffuse interface parameter approaches 0, the model reduces to the
original one, involving free boundaries. Phase-field models can capture topological
changes such as merging and splitting, and have thus been used successfully for direct
numerical simulation of multi-phase flows [19,20]. For different applications we refer
to [21,22], where a (pore-scale) phase-field model is developed for a precipitation-
dissolution model involving one fluid phase, to [23,24] for two fluid phases, to [25] for
two-phase flow including a temperature-dependent surface tension, and to [26,27] for
fracture propagation in porelastic media.

In this paper, we derive a two-scale model for the two-phase flow in a porous
medium, in which surfactant-dependent surface-tension effects are taken into account.
More specifically, at the pore scale, the surface tension depends on the concentration
of the surfactant, which is soluble in one of the fluid phases. The starting point is
a Cahn-Hiliard [28] approximation of the phase separation together with the Navier-
Stokes equations for the flow of the two fluids. Such models have been considered in
[29–31]. Alternatively, in [32–34] the pore-scale flow is described by the Stokes model.
We prefer to use the Navier-stokes equation for capturing fully the physics of the two-
phase fluid flow at the pore scale. We highlight that a thermodynamically consistent
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phase-field model for two-phase flow was first derived in [29], and later, two-phase flow
models with surfactants were considered in [30]. Our model builds upon the model B
derived in [30], where two-phase flow with variable surface tension is considered and
the phase-field approach within a free energy framework is used to model the phase
separation. We consider the instantaneous adsorption regime in [30], and simplify the
model by assuming that the surfactant is only present in one of the fluid phases. Con-
cerning numerical methods for similar type of models as discussed here, we refer to
[35], where energy-stable schemes are proposed for a Cahn-Hiliard model for two-phase
flow and surfactant transport, and to [36,37], where energy-stable methods based on
discontinuous Galerkin discretization are analyzed.

Referring strictly to two-phase flow in porous media, various upscaling techniques
can be considered to derive Darcy-scale models. In this sense, we mention simple
transversal averaging, volume averaging, and homogenization techniques. The former
can be applied when a simple geometry is assumed, as done e.g. in [7–10,38]. For
volume averaging we refer to [31,39,40]. For rigorous homogenization we refer to [41–
43], where the convergence of the upscaling process is proved.

Here we employ homogenization techniques for the formal derivation of the two-
scale two-phase flow model, accounting for the surface-tension effects, as depending
on the surfactant dissolved in one fluid phase. More precisely, we use formal asymptotic
expansion methods and assume local periodicity at the pore scale. For similar results,
we refer to [33,34,44,45] where no surfactant is present in the model, and to [32],
where a solute transport component is included in the model, but without affecting
the surface tension.

This paper is organized as follows. In Section 2, we present the Cahn-Hillard-Navier-
Stokes two-phase flow model with solute-dependent surface tension and give the sharp-
interface limit of the phase-field model. In Section 3, we derive the upscaled model
from the non-dimensional pore-scale phase-field model using the asymptotic expansion
method. In Section 4, we present the numerical scheme for solving the two-scale model
and then solve this model for some test cases in Section 5. Finally, in Section 6, we
draw our conclusions and give some remarks for future research.

2. The pore-scale model

Here we discuss the pore-scale model for the two-phase flow in a porous medium.
The fluids are assumed incompressible and immiscible. For each fluid phase, the flow
is governed by the Navier-Stokes model, defined in the corresponding sub-domain,
and with fluid-specific parameters. The model accounts for a concentration-dependent
surface tension. The surfactant is assumed soluble in one of the two fluid phases, and
its concentration solves a convection-diffusion equation defined in the sub-domain of
the solvent.

The fluid-fluid interface appears as free boundaries at the pore scale. To describe
its movement, one considers the force balance of stress connected to the surface ten-
sion and the tangential stress force. The surface tension varies with the surfactant
concentration at the separating interface.

As mentioned before, to overcome the difficulties related to the free boundaries, we
use the phase-field approximation developed in [30], in which one works with a mixture
of both fluids. However, by excepting a thin diffuse interface region, one can identify
sub-domains in which one or another fluid is predominant. The evolution of the phase
field is given by the Cahn-Hilliard equation.
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In what follows, we let Ω denote the entire the pore space. Its boundary, ∂Ω, has
two parts: an inner one, the pore walls, and an outer one, the boundary of the entire
medium. We consider the time interval [0,∞), and let Q = [0,∞)× Ω.

2.1. The phase-field model

In the phase-field model, the interface separating the two immiscible fluids is approx-
imated by a diffuse interface. A phase indicator φ : Q → R accounts for the presence
of the two fluids, taking values either close to 1 in points occupied mainly by fluid 1 or
close to -1 in points occupied mainly by fluid 2. We let ρ, µ, v denote the density, vis-
cosity and velocity of the mixture. Observe that these depend on φ. Following [29,30]
the energy of the fluid-fluid interface is approximated by the Ginzburg-Landau energy
functional

efree(φ,∇φ) = C
(

1

λ
P (φ) +

λ

2
|∇φ|2

)
, (1)

where λ > 0 is the thickness of the diffuse interfacial region, C = 3
2
√

2
is a calibration

constant, while P : R→ R is the double-well potential defined as

P (φ) =
1

4
(1− φ2)2. (2)

2.1.1. The Cahn-Hilliard equations

We use the convective Cahn-Hilliard equation

∂tφ+∇ · (vφ) = m λ ∆ψ, in Q, (3a)

to describe the phase separation. Here, the Cahn-Hilliard mobility m > 0 is assumed
constant. Different choices for mobility are given in [29], leading to various sharp-
interface models in the limit λ→ 0.

We let c denote the concentration of the solute present in fluid 1 and γ(c) the
concentration-dependent surface tension. We assume that γ is linearly decreasing,
namely the Henry isotherm (see [30])

γ(c) = γ0 −B β c. (3b)

Here γ0 is the surface tension of a clean interface, B is the sensitivity of the surface
tension to the surfactant, and β > 0 is a constant which is connected to the length
scale. Following Model B in [30], which corresponds to instantaneous adsorption, and
considering (3b), we use the potential ψ given by

ψ = −∇ · (Cλγ(c)∇φ) +
C
λ
γ(c)P ′(φ) +

1

β
γ(c)I ′(φ), in Q, (3c)

where I : R→ R is defined as

I(φ) =
1

2
(1 + φ). (3d)
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As shown in [30], when λ → 0, the phase field φ approaches the sign graph and
therefore I(φ) approaches the characteristic function of fluid 1. Note the last term in
(3c), which is added to include the effect of the varying surface tension.

For simplicity, we assume homogeneous Neumann boundary conditions for the phase
field φ, as well as for the chemical potential ψ

∇φ · n = 0, and ∇ψ · n = 0, on ∂Ω, for t > 0, (3e)

where n is the unit normal to ∂Ω pointing out of Ω. The first boundary condition
corresponds to a 90◦ contact angle, and the second is needed for conserving the mass
of the phase field.

The Cahn-Hilliard equations (3a), (3c) are completed by the initial condition

φ(0, ·) = φint, in Ω, (3f)

where φint : Ω → R is a given function approximating the initial distribution of the
two fluids in Ω.

2.1.2. The flow equations

Since the mixture velocity is volume averaged, and since we assume there is no excess
volume after mixing, v is divergence free (see [29]),

∇ · v = 0, in Q. (3g)

For i = 1, 2, we let ρ(i) and µ(i) be the (constant) mass densities and (constant)
viscosities of fluid i. Here, the density and viscosity of the mixture are defined as

ρ(φ) = ρ(1)·(1+φ)
2 + ρ(2)·(1−φ)

2 , µ(φ) = µ(1)·(1+φ)
2 + µ(2)·(1−φ)

2 .
The momentum conservation law is a modified Navier-Stokes equation

∂t (ρ(φ)v) +∇ · (ρ(φ)v ⊗ v)−∇ ·
(
−pI + 2µ(φ)ε(v) + v ⊗ ρ′(φ)λ m ∇ψ

)
= ∇ · (γ(c) (efree(φ,∇φ)I − Cλ∇φ⊗∇φ)) , in Q,

(3h)

where ε(v) := 1
2

(
(∇v) + (∇v)T

)
is the symmetric stress tensor and p is a rescaled

pressure. Here the flux term (v ⊗ ρ′(φ)λ m ∇ψ) ensures thermodynamic consistency
(see [29] and [30] for details) and the last two terms in (3h) account for the surface
tension between the fluids. While such effects can be included in various ways (see [46]),
here we adopt the approach in [30], based on the energy term efree(φ,∇φ)I appearing
in (3h). For convenience, from now on we use the following equivalent formulation of
the momentum equation (3h)

∂t (ρ(φ)v) +∇ · (ρ(φ)v ⊗ v)−∇ ·
(
−pI + 2µ(φ)ε(v) + v ⊗ ρ′(φ)λ m ∇ψ

)
=

(
C
λ
γ(c)P ′(φ)−∇ · (Cλγ(c)∇φ)

)
∇φ+

(
Cλ
2
|∇φ|2 +

C
λ
P (φ)

)
∇γ(c), in Q.

(3i)

With D > 0 denoting the diffusion coefficient, the solute transport model reads

∂t(I(φ)c) +∇ · (I(φ)vc) = ∇ · (D I(φ)∇c) , in Q. (3j)
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Note that as φ approaches -1, I(φ) vanishes, which is in line with the assumption that
the solute is only present in fluid 1.

We assume that the velocity and solute flux are zero on the boundary

v = 0 and I(φ)∇c · n = 0 on ∂Ω, for t > 0. (3k)

Furthermore, the initial velocity and concentration are assumed known, v |t=0 =
v intandc|t=0 = cintinΩ.

2.2. The sharp-interface limit of the phase-field model equations

Employing matched asymptotic methods, in [30] it is shown that, in the limit λ→ 0,
the phase field model discussed above reduces to a sharp-interface model that will
be given below. In this case, one has different quantities for each fluid phase, namely
v (i), p(i)(i = 1, 2) standing for the velocity and pressure of fluid i. Moreover, these
quantities are defined in time-dependent subdomains Ω(i)(t). More precisely, the sharp-
interface model for fluid i reads

∂t

(
ρ(i)v (i)

)
+∇ ·

(
ρ(i)v (i) ⊗ v (i)

)
−∇ ·

(
−p(i)I + 2µ(i)ε(v (i))

)
= 0, (4a)

∇ · v (i) = 0. (4b)

for t > 0 and x ∈ Ωi(t).
For the surfactant concentration, soluble only in fluid 1, we have

∂tc+∇ ·
(

v (1)c
)

= ∇ · (D∇c), in Ω(1)(t), for t > 0. (4c)

The fluid-fluid interface Γ(t) is a free boundary whose evolution is determined by the
fluid velocities and the surface tension. For any t > 0, at Γ(t), one has[

v (i)
]

= 0, (4d)

v (i) · n = vn, (4e)[
−p(i)I + 2µ(i) ε(v (i))

]
n = γ(c)κn −∇tγ(c), (4f)(

−D∇c+ v (1)c
)
· n = vn c. (4g)

Here [.] stands for the jump of the quantities from Ω(1)(t) to Ω(2)(t), κ is the mean
curvature of Γ(t) and vn its normal velocity. Moreover,∇tγ(c) := ∇γ(c)−n (n · ∇γ(c))
is the tangential stress gradient, where n is the unit normal vector on Γ(t) pointing
into Ω(1)(t) from Ω(2)(t).

3. Upscaling the pore-scale model to the Darcy scale

As stated in the introduction, we assume that, at the pore scale, the porous medium
Ω consists of small but many periodically distributed impermeable grains, surrounded
by a void space (the pore space). We are interested in the averaged behavior of the
system, observed at the larger (Darcy) scale. At the same time, smaller (pore) scale
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information should not be disregarded. The pore scale and the Darcy scale are assumed
well separated. With ` and L being the characteristic lengths of the pore scale and of
the Darcy scale, we use ε = `

L � 1 as the scale separation parameter.

To define the pore-scale domain, we write Y = [0, `]d, (d = 2, 3) as the union of the
grain G, its boundary ∂G and the surrounding pore space P,

Y = P ∪ G ∪ ∂G.

The entire porous medium occupies the domain

Ω = ∪w∈WΩ
{` (w + Y )} ,

where WΩ ⊂ Zd is a set of multi-indices. We assume that WΩ is such that Ω is a
connected set.

The phase-field model is defined in the entire pore space,

Ωε
P = ∪w∈WΩ

{` (w + P)} ,

which is also assumed to be connected.
The boundary of Ωε

P consists of the outer part, ∂Ω, and the inner part, which is the
union of the grain boundaries,

ΓεG = ∪w∈WΩ
{` (w + ∂G)} .

Note that the grains are not part of Ωε
P . See Figure 1 for a sketch of the domain.

x2

x1

Ω

x

Y

y2

y1

Figure 1. Schematic representation of the porous medium Ω. The figure in the middle presents periodically

repeating grains (coloured gray) surrounded by void space (the pores) occupied by two immiscible fluids (blue
and red). A surfactant soluble in fluid 1 is present (white particles). The right figure is a typical representation

of a pore.

3.1. Non-dimensional model equations

For deriving the Darcy-scale model, we first bring the pore-scale model to a dimen-
sionless form. To do so, we use the reference values and the non-dimensional quantities
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in Table 1, and the non-dimensional numbers

Eu =
pref

ρrefv
2
ref

, Re =
ρrefvrefxref

µref
, Ca =

µrefvref

γref
,

Pec =
vrefxref

D
, Aφ =

mψref

vref
, Aψ =

γref

xrefψref
.

(5)

Table 1. Reference values and non-dimensional quantities

Variables and parameters Reference values Units Non-dimensional quantities

Time tref [s] t̂ = t/tref
Space (Darcy scale) xref = L [m] x̂ = x/xref
Space (pore scale) yref = ` [m] ŷ = y/yref
Velocity vref = xref/tref [m

s
] v̂ = v/vref

Pressure pref [ kg
m s2

] p̂ = p/pref
Molar concentration cref [mol

m3 ] ĉ = c/cref
Density ρref [ kg

m3 ] ρ̂ = ρ/ρref
Viscosity µref [ kg

m s
] µ̂ = µ/µref

Surface tension γref [ kg
s2

] γ̂(ĉ) = γ(cref ĉ)/γref
Diffuse interface thickness λref = yref = ` [m] λ̂ = λ/yref

βref = yref = ` [m] β̂ = β/yref
Free energy efree,ref = 1

xref
[ 1
m

] êfree = efree xref

Cahn-Hilliard chemical potential ψref [ kg
m s2

] ψ̂ = ψ/ψref

Diffusion coefficient D [m
2

s
]

Cahn-Hilliard mobility m [m
2 s
kg

]

Observe that the diffuse interface parameters λ and β are assumed to have the
order of the pore-scale length `. In dimensionless form, these are chosen of order O(ε),
but smaller than ε. Using the reference values and non-dimensional quantities from
Table 1, and the non-dimensional numbers in (5), we obtain the dimensionless model

∂t̂ (ρ̂(φ)v̂) + ∇̂ · (ρ̂(φ)v̂ ⊗ v̂) = ∇̂ ·
(
−Eu p̂I +

1

Re
2µ̂(φ)ε(v̂)

)
+ ∇̂ ·

(
εAφλ̂ρ̂

′(φ)v̂ ⊗ ∇̂ψ̂
)

+
1

Re Ca

(
C
ελ̂
γ̂(ĉ)P ′(φ)− ∇̂ ·

(
ε Cλ̂γ̂(ĉ)∇̂φ

))
∇̂φ

+
1

Re Ca

(
ε Cλ̂

2
|∇̂φ|2 +

C
ελ̂
P (φ)

)
∇̂γ̂(ĉ), (6a)

∇̂ · v̂ = 0, (6b)

∂t̂(I(φ)ĉ) + ∇̂ · (I(φ)v̂ ĉ) =
1

Pec
∇̂ ·
(
I(φ)∇̂ĉ

)
, (6c)

∂t̂φ+ ∇̂ · (v̂φ) = εAφλ̂∆̂ψ̂, (6d)

ψ̂ = Aψ

(
C
ελ̂
γ̂(ĉ)P ′(φ) +

1

εβ̂
γ̂(ĉ)I ′(φ)− ∇̂ ·

(
ε Cλ̂γ̂(ĉ)∇̂φ

))
, (6e)
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for all x ∈ Ω̂ε
P and t > 0. At the inner boundary Γ̂εG and for t > 0, one has

v̂ = 0, (6f)

I(φ)∇̂ĉ · n = 0, (6g)

∇̂φ · n = 0, (6h)

∇̂ψ̂ · n = 0. (6i)

For the ease of presentation, since from now on only the non-dimensional quantities
are considered, the hat is ommited in all notations.

3.2. Derivation of the two-scale model

We derive the upscaled counterpart of the phase-field model in Section 2.1. To do so,
we employ formal asymptotic expansions w.r.t. ε. More precisely, we assume that all
variables can be expanded regularly in terms of ε. For example, for φ one has

φ(t,x ) = φ0(t,x ,
x

ε
) + εφ1(t,x ,

x

ε
) +O(ε2), (7)

where the functions φi are Y -periodic w.r.t. the last argument. In other words, for
j = 1, . . . , d and with ej being the unit vector in the j-th direction, one has φi(t,x ,y +
ej) = φi(t,x ,y). Similar expansions are used for p, v , c. Note that the spatial variable
x is doubled into the slow one, x , accounting for the changes at the Darcy scale, and
the fast variable y = x

ε , where the rapid oscillations occur. With this the j-th spatial

derivative ∂xj
becomes ∂xj

+ 1
ε∂yj and

∇ =
1

ε
∇y +∇x . (8)

Observe that, unlike [45], we do not consider an additional fast time scale, and do not
disregard the O(ε) terms in the expansion of the phase field and of the velocity. At
this point, we assume the following scaling of the dimensionless numbers (5),

Eu = ε−2 Eu, Re = Re, Ca = Ca,

Pec = Pec, Aφ = Aφ, Aψ = εAψ,
(9)

where Eu,Re,Ca,Pec,Aφ and Aψ do not depend on ε. By choosing this scaling of the
Euler number Eu and of the Reynolds number Re, we make sure that we are in the
regime where Darcy’s law is applicable, which corresponds to a laminar flow driven by
the pressure gradient. The scaling of the capillary number Ca is chosen moderate w.r.t.
ε. This choice results in equal pressures in both phases. Further, the Péclet number
Pec is of order 1, which corresponds to the time scales of solute transport by advection
and diffusion being of the same order. For simplicity, here Ca = Pec = 1. The scaling
of Aφ and Aψ is needed for the phase-field interface dynamics to be active at the pore
scale.

For the ease of presentation, the dependency of t,x and y will in the following only
be written whenever needed. Also, recall that all model variables are Y -periodic.
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3.2.1. The flow equations

Inserting the asymptotic expansions in the reformulated momentum and mass con-
servation equations (6a) and (6b), and in the no-slip boundary condition (6f), and
applying (8), one obtains for all t > 0

− 1

ε3
Eu∇yp0 −

1

ε2
Eu (∇xp0 +∇yp1) +

1

ε2
1

Re
∇y · (2µ(φ0)εy (v0))

+
1

Re Ca

1

ε2

{(
C
λ
γ(c0)P ′(φ0)− Cλ∇y · (γ(c0)∇yφ0)

)
∇yφ0

+C
(
λ

2
|∇yφ0|2 +

1

λ
P (φ0)

)
∇yγ(c0)

}
+O(ε−1) = 0, in Ω× P, (10a)

1

ε
∇y · v0 +∇x · v0 +∇y · v1 +O(ε) = 0, in Ω× P, (10b)

v0 + εv1 +O(ε2) = 0, on Ω× ∂G. (10c)

Since |Y | = 1, for all t > 0 and x ∈ Ω we define the averaged velocity as

v̄(t,x ) :=

∫
P

v0(t,x ,y) dy . (11)

The lowest order term in (10b) provides

∇y · v0 = 0, (12)

for all y ∈ P. Next, the ε0-order terms give

∇x · v0 +∇y · v1 = 0, (13)

for all y ∈ P. Integrating the above w.r.t y , applying the Gauss theorem, and using
the periodicity of v1 and the boundary condition v1 = 0 on ∂G, one gets

∇x · v̄ = 0, (14)

for all t > 0 and x ∈ Ω. Equating the dominating O(ε−3) term in (10a) gives

∇yp0 = 0,

for all y ∈ P, so p0 = p0(t,x ). Further, in section 3.2.3 we also show that c0 = c0(t,x )
is independent of y , and therefore, the last O(ε−2) terms in (10a) are vanishing. Hence,
the O(ε−2) terms in (10a) yield

Eu∇yp1 −
1

Re
∇y · (2µ(φ0)εy (v0)) = −Eu∇xp0

+
1

ReCa
γ(c0)

(
C
λ
P ′(φ0)− Cλ∆yφ0

)
∇yφ0,

(15)

for all t > 0, x ∈ Ω and y ∈ P.
Observe that (15) and (12) form a Stokes system in terms of the unknowns p1 and

v0, depending on p0, φ0 and c0. This dependence can be made more precise through
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the cell problems, defined for all x ∈ Ω and t > 0,

Eu
(
ej +∇yΠj

)
= − 1

Re
∇y ·

(
2µ(φ0)εy (wj)

)
, in P,

∇y ·wj = 0, in P,
wj = 0, on ∂G,

Πj,wj are Y -periodic and

∫
P

Πj dy = 0,

(16)

for j = 1, . . . , d, and

Eu∇yΠ0 = − 1

Re
∇y · (2µ(φ0)εy (w0))

+
1

Re Ca

(
C
λ
P ′(φ0)− Cλ∆yφ0

)
∇yφ0, in P,

∇y ·w0 = 0, in P,
w0 = 0, on ∂G,

Π0,w0 are Y -periodic and

∫
P

Π0 dy = 0.

(17)

By linearity, having solved the cell problems above, one immediately gets v0 and p1

as functions of p0, c0 and, implicitly, of φ0

v0(t,x ,y) = −
d∑

j=1

wj(t,x ,y) ∂xj
p0(t,x )−w0(t,x ,y) γ(c0(t,x )), (18)

p1(t,x ,y) = p̃1(t,x ) +

d∑
j=1

Πj(t,x ,y) ∂xj
p0(t,x ) + Π0(t,x ,y)γ(c0(t,x )). (19)

Here p̃1 = p̃1(t,x ) is an arbitrary function not depending on y . Integrating (18) w.r.t.
y over P and using (11) yields

v̄ = −K∇xp0 −M γ(c0), (20)

for all x ∈ Ω and t > 0. The elements of the effective matrix K(t,x ) and the com-
ponents of the effective vector M (t,x ) are obtained using the solutions of the cell
problems (16) and (17),

Ki,j =

∫
P
wi,j dy and M i =

∫
P
wi,0 dy , with i, j = 1, . . . , d, (21)

where wi,α is the i-th component of wα (α ∈ {0, . . . , d}).

3.2.2. The Cahn-Hilliard equations

By Taylor expansions about φ0 and c0, we can write

P (φ) = P (φ0) + εφ1P
′(φ0) +O(ε2), γ(c) = γ(c0) + εc1γ

′(c0) +O(ε2). (22)

11



Using this and the homogenization ansatz (7) in equation (6d), (6e), (6h) and (6i),
one gets for all t > 0

O(ε) =
1

ε
∇y · (v0φ0)− 1

ε
Aφλ∆yψ0 + ∂tφ0 +∇x · (v0φ0)

−Aφλ (∇x · (∇yψ0) +∇y · (∇xψ0) + ∆yψ1) , in Ω× P, (23a)

O(ε) =ψ0 − γ(c0)Aψ

(
CP ′(φ0)

λ
+
I ′(φ0)

β
− Cλ∆yφ0

)
, in Ω× P, (23b)

O(ε) =
1

ε
∇yφ0 · n +∇xφ0 · n +∇yφ1 · n , on Ω× ∂G, (23c)

O(ε) =
1

ε
∇yψ0 · n +∇xψ0 · n +∇yψ1 · n , on Ω× ∂G. (23d)

Since |Y | = 1, the porosity of the medium is defined as

Φ := |P|. (24)

We also define

φ̄(t,x ) :=
1

Φ

∫
P
φ0(t,x ,y) dy . (25)

Since φ0 approaches 1 inside fluid 1, we use (3d) to define the fluid 1 saturation as

S :=
1

Φ

∫
P
I(φ0)dy =

1

2

(
1 + φ̄

)
, (26)

for all t > 0 and x ∈ Ω. Equating the lowest order terms in (23a)-(23d), and using
(26), one gets the local cell problem for the phase field and the potential,

∇y · (v0φ0) = Aφλ∆yψ0, in P,

ψ0 = γ(c0)Aψ

(
CP ′(φ0)

λ
+
I ′(φ0)

β
− Cλ∆yφ0

)
, in P,

∇yφ0 · n = 0, on ∂G,
∇yψ0 · n = 0, on ∂G,

φ0, ψ0 are Y -periodic, and
1

Φ

∫
P
φ0 dy = 2 S − 1,

(27)

for all t > 0 and x ∈ Ω, where v0 is defined in (18). Observe that in the above equations
only spatial derivatives w.r.t. y are present. The constraint 1

Φ

∫
P φ0 dy = 2 S−1 follows

from (26) and ensures the uniqueness of a solution.
The ε0-order terms in (23a) equate to

∂tφ0 +∇x · (v0φ0) = Aφλ {∇x · (∇yψ0) +∇y · (∇xψ0) + ∆yψ1} , (28)

for all t > 0, x ∈ Ω and y ∈ P. Integrating the above equation over P w.r.t y and

12



using the periodicity of ψ0 and ψ1 yields

∂t

∫
P
φ0 dy +∇x ·

∫
P

(v0φ0) dy = 0, (29)

for all t > 0 and x ∈ Ω. Using (26), this becomes

Φ∂tS +
1

2
∇x · v̄φ = 0, (30)

for all t > 0 and x ∈ Ω, where v̄φ is the φ-dependent velocity given by

v̄φ(t,x ) :=

∫
P

v0(t,x ,y)φ0(t,x ,y) dy . (31)

Using (18) in the above equation, one finds

v̄φ = −Kφ ∇xp0 −M φ γ(c0), (32)

for all t > 0 and x ∈ Ω, where the elements of the effective matrix Kφ(t,x ) and the
components of the effective vector M φ(t,x ) are defined by

Kφi,j :=

∫
P
wi,j φ0 dy and M φ

i :=

∫
P
wi,0 φ0 dy , for i, j = 1, . . . , d. (33)

Again, wj and w0 are the solutions of the cell problems (16) and (17).

3.2.3. Solute conservation equation

Using the homogenization ansatz in (6c) and (6g) provides

− 1

ε2
1

Pec
∇y · (I(φ0)∇yc0) +

1

ε
∇y · (I(φ0)v0c0)− 1

ε

1

Pec
∇x · (I(φ0)∇yc0)

− 1

ε

1

Pec
∇y ·

(
I(φ0) (∇x c0 +∇yc1) + φ1

1

2
∇yc0

)
+ ∂t(I(φ0)c0) +∇x · (I(φ0)v0c0)

+∇y ·
(
I(φ0) (v0c1 + v1c0) + φ1

1

2
v0c0

)
− 1

Pec
∇y ·

(
I(φ0) (∇x c1 +∇yc2) + φ1

1

2
(∇x c0 +∇yc1)

)
− 1

Pec
∇x ·

(
I(φ0) (∇x c0 +∇yc1) + φ1

1

2
∇yc0

)
+O(ε) = 0, in Ω× P, (34a)

1

ε
I(φ0)∇yc0 · n + I(φ0) (∇x c0 +∇yc1) · n + εI(φ0) (∇x c1 +∇yc2) · n

+ εφ1
1

2
∇yc0 · n +O(ε2) = 0, on Ω× ∂G. (34b)

13



The lowest order term from the above equations gives, for all t > 0 and x ∈ Ω,

∇y · (I(φ0)∇yc0) = 0, in P, and

I(φ0)∇yc0 · n = 0, on ∂G.

Using the Y -periodicity of c0, one immediately gets that c0 = c0(t,x ) is independent
of y . Further, the ε−1-order terms in (34a) equate to

1

Pec

∇y · (I(φ0)∇yc1) = − 1

Pec

∇y · (I(φ0)∇x c0) + c0 (∇y · (I(φ0)v0)) , (35)

for all t > 0, x ∈ Ω and y ∈ P. This, together with the boundary condition (34b),
allows obtaining c1 in terms of φ0, c0 and v0, by solving the cell problems

∇y ·
[
I(φ0)

(
∇yχj + ej

)]
= 0, in P,

I(φ0)
(
∇yχj + ej

)
· n = 0, on ∂G,

χj is Y -periodic and

∫
P
χj dy = 0,

(36)

for j = 1, . . . , d, and
∇y · [I(φ0)∇yχ0] = ∇y · (I(φ0)v0) , in P,
I(φ0)∇yχ0 · n = 0, on ∂G,

χ0 is Y -periodic and

∫
P
χ0 dy = 0.

(37)

With (36) and (37), one has for all t > 0, x ∈ Ω and y ∈ P

c1(t,x ,y) = c̃1(t,x ) +

d∑
j=1

χj(t,x ,y) ∂xj
c0(t,x ) + χ0(t,x ,y)c0(t,x ), (38)

where c̃1 = c̃1(t,x ) is arbitrary. Finally, the ε0-order terms in (34a) equate to

∂t(I(φ0)c0) +∇x · (I(φ0)v0c0)− 1

Pec
∇x · (I(φ0) (∇x c0 +∇yc1))

= −∇y ·
(
I(φ0) (v0c1 + v1c0) + φ1

1

2
v0c0

)
+

1

Pec
∇y · (I(φ0) (∇x c1 +∇yc2))

+
1

Pec
∇y ·

(
φ1

1

2
(∇x c0 +∇yc1)

)
,

(39)

for all t > 0, x ∈ Ω and y ∈ P. Integrating the above w.r.t y over P, using the
definitions of the averaged velocity and φ-dependent velocity in (11) and (31), together
with the periodicity, one gets the macroscopic law for the solute conservation

Φ ∂t (S c0) +
1

2
∇x ·

(
c0

(
v̄ + v̄φ

))
=

1

Pec
∇x · (B∇x c0 + H c0), (40)
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for all t > 0 and x ∈ Ω. Here the elements of the effective matrix B(t,x ) and the
components of the effective vector H (t,x ) are determined by

Bi,j =

∫
P
I(φ0)

(
δij + ∂y i

χj
)
dy , H i =

∫
P
I(φ0)∂y i

χ0 dy , (41)

for i, j = 1, . . . , d, and where χj and χ0 solve the cell problems (36) and (37).

3.3. Summary of upscaled model

To simplify the notation, from here we give up the indices 0 in v0, φ0, ψ0, p0, and
c0. With this, the Darcy-type laws in (20) and (32) for the velocities, and the mass
conservation laws for the two fluids and for the solute in (14), (30), and (40) can be
written as

v̄ = −K ∇p−M γ(c), (42a)

∇ · v̄ = 0, (42b)

Φ ∂tS +
1

2
∇ · v̄φ = 0, (42c)

v̄φ = −Kφ ∇p−M φ γ(c), (42d)

Φ ∂t(S c) +
1

2
∇ ·
(
c
(

v̄ + v̄φ
))

=
1

Pec
∇ · (B ∇c+ H c), (42e)

defined for all t > 0 and x ∈ Ω. The Darcy-scale unknowns are v̄(t,x ), S(t,x ),
v̄φ(t,x ), p(t,x ), and c(t,x ). This system is completed with boundary conditions on
∂Ω, and the initial solute concentration cint. Moreover, an initial (pore-scale) phase
field φint is prescribed at each Darcy-scale point, yielding an initial saturation Sint

satisfying (26). The effective parameters K, Kφ, M , M φ, B and H are obtained by
solving cell problems, as given in Table 2.

Table 2. Parameters for the upscaled model (42).

Effective parameters Cell problems

Ki,j =
∫
P wi,j dy , Eu (ej +∇y Πj) = − 1

Re
∇y · (2µ(φ)εy (wj)) , in P,

Kφi,j =
∫
P wi,j φ dy . ∇y ·wj = 0, in P,

wj = 0, on ∂G,
Πj,wj are Y -periodic and

∫
P Πj dy = 0, for j = 1, . . . d.

M i =
∫
P wi,0 dy , Eu∇y Π0 = − 1

Re
∇y · (2µ(φ)εy (w0)) + 1

Re Ca

(
C
λ
P ′(φ)− Cλ∆yφ

)
∇yφ, in P,

M φ
i =

∫
P wi,0 φ dy . ∇y ·w0 = 0, in P,

w0 = 0, on ∂G,
Π0,w0 are Y -periodic and

∫
P Π0 dy = 0.

Bi,j =
∫
P I(φ)

(
δij + ∂yi

χj
)
dy . ∇y · [I(φ) (∇yχj + ej)] = 0, in P,

I(φ) (∇yχj + ej) · n = 0, on ∂G,
χj is Y -periodic and

∫
P χj dy = 0, for j = 1, . . . d.

H i =
∫
P I(φ)∂yi

χ0 dy . ∇y · [I(φ)∇yχ0] = ∇y · (I(φ0)v) , in P,
I(φ)∇yχ0 · n = 0, on ∂G,
χ0 is Y -periodic and

∫
P χ0 dy = 0.

To calculate the effective quantities, one needs the phase field φ(t,x ,y). This is
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obtained by solving for all t > 0 and x ∈ Ω the problem

∇y · (vφ) = Aφλ∆yψ, in P,

ψ = Aψγ(c)

(
CP ′(φ)

λ
+
I ′(φ)

β
− Cλ∆yφ

)
, in P,

∇yφ · n = 0,∇yψ · n = 0 on ∂G,

φ and ψ are Y -periodic and
1

Φ

∫
P
φ dy = 2 S − 1.

(43)

Here v is nothing but the pore-scale velocity v0 in (18), namely

v(t,x ,y) = −
d∑

j=1

wj(t,x ,y) ∂xj
p(t,x )−w0(t,x ,y) γ(c(t,x )). (44)

Remark 1. Inspired by the definition of the fluid 1 saturation S in (26), and since
1
2

(
v̄ + v̄φ

)
= 1

2

∫
P v0(1 + φ) dy and 1

2

(
v̄ − v̄φ

)
= 1

2

∫
P v0(1− φ) dy , one can identify

the quantities corresponding to fluid i and reformulate the Darcy-scale equations
accordingly. More precisely, we consider the (Darcy-scale) fluid-specific quantities

S(1) = S, v̄ (1) =
1

2

(
v̄ + v̄φ

)
, K(1) =

(K +Kφ)

2
, M (1) =

(M + M φ)

2
,

S(2) = 1− S, v̄ (2) =
1

2

(
v̄ − v̄φ

)
, K(2) =

(K −Kφ)

2
, M (2) =

(M −M φ)

2
.

Then, for all t > 0 and x ∈ Ω, the Darcy-scale equations (42a)-(42d) become

v̄ (i) = −K(i) ∇p−M (i) γ(c), (45a)

Φ∂tS
(i) +∇ · v̄ (i) = 0, (45b)

Observe that (45a) and (45b) are similar to the standard effective model for two-phase
flow, when assuming a zero capillary pressure, respectively that the phase pressures
are equal. In simplifed geometries, such models are derived by transversal averaging,
but assuming that the capillary number is moderate compared to ε, namely O(1) (see
[8,10]). Moreover, (45a) are enriched Darcy laws, where the last terms account for
the surfactant effects, leading to a variable surface-tension. Additionally, K(i) is the
relative permeability of fluid i multiplied by the absolute permeability of the medium,
and M (i) is connected to the effective variable surface-tension effect of the fluid phases.
Finally, since v̄ (1) + v̄ (2) = v̄ , (42b) implies that the total flow is divergence free.

Models disregarding the capillary pressure effects are quite popular in the numerical
simulation of two-phase porous-media flows. Compared to these, even if the presence
of a soluble surfactant is disregarded, one aspect is much different in the Darcy-scale
model derived here. Commonly used models build on a relationship between the rel-
ative permeability of a fluid phase and its saturation. Here, no such relationship is
assumed, as the permeability is obtained from the pore scale, by solving the corre-
sponding cell problems.
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4. An explicit numerical scheme

For solving the two-scale model summarized in Section 3.3, we consider a simple,
explicit numerical scheme. Given N ∈ N, we define the time step ∆t := T/N and let
tn = n∆t. The time-discrete functions are denoted by

φn := φ(tn, ·, ·), νn := ν(tn, ·) and ηnj := ηj(t
n, ·),

where ν ∈
{
Kφ,K,M φ,M ,B,H , p, v̄ , v̄φ, S, c

}
, and ηj ∈

{
Πj,wj, χj

}
with j =

0, 1, . . . d. We denote the given initial data c0, φ0 and S0, where S0 satisfies (26).
At each time step n ≥ 0, the following steps are carried out.

Step 1. For each x ∈ Ω, compute the solution of the time-discrete counterpart of
(16) and (17), i.e. obtain (Πn

j ,w
n
j ) with j = 0, 1, . . . d.

Step 2. Compute the time-discrete effective parameters Kφ,n, Kn, M φ,n and M n.
Step 3. Compute the solution of the time-discrete counterpart of (42a) and (42b).

Specifically, obtain pn and v̄n by solving

v̄n = −Kn∇pn −M nγ(cn),

∇ · v̄n = 0.
(46)

Step 4. Use the explicit, time-discrete counterpart of (42c) and (42d) to compute

v̄φ,n = −Kφ,n ∇pn −M φ,n γ(cn),

Sn+1 = Sn − ∆t

2Φ
∇ · v̄φ,n.

(47)

Step 5. For each x ∈ Ω, compute the pore-scale velocity vn as in (18). Solve the
time-discrete counterpart of (36) and (37), i.e. obtain χj,n with j = 0, 1, . . . d.

Step 6. Compute the second set of time-discrete effective parameters Bn and H n.
Step 7. Compute the solution of the time-discrete counterpart of (42e). Specifically,

obtain cn+1 by solving the following time-discrete problem

Sn+1cn+1 = Sncn+
∆t

Pec Φ
∇·
(
Bn∇cn+1

)
−∆t

2 Φ
∇·
[(

v̄n+v̄φ,n− 1

Pec
~Hn
)
cn
]
. (48)

Step 8. For each x ∈ Ω, compute φn+1, the solution of (43) at t = tn+1.

Remark 2. Observe that the problem (43) is nonlinear. For solving it, we have
adopted a linear iterative approach. More precisely, at each Darcy-scale mesh point
x ∈ Ω and time tn, with L > 0 large enough and letting i ∈ N be the iteration index,
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assuming φn+1,i−1 known and Y -periodic, one solves the system

∇y · (vnφn+1,i) = Aφλ∆yψ
n+1,i, in P,

ψn+1,i = Aψγ(cn+1)

(
CP ′(φn+1,i−1)

λ
+
I ′(φn+1,i−1)

β

+ L(φn+1,i − φn+1,i−1)− Cλ∆yφ
n+1,i

)
, in P,

∇yφ
n+1,i · n = 0, ∇yψ

n+1,i · n = 0, on ∂G,

φn+1,i and ψn+1,i are Y -periodic and
1

Φ

∫
P
φn+1,i dy = 2Sn+1 − 1.

(49)

The velocity vn is given in (44), computed for t = tn. As a starting guess we choose
the phase field at the previous time, φn+1,0 = φn. However, the numerical experiments
showed that the iterations are convergent regardless of the initial guess.

Pore scale

Darcy scale

Solve pore-
scale problems
(16) and (17)

Compute Kφ,n,
Kn, M φ,n and M n

Initial
conditions
c0, φ0

(and S0)

Solve the Darcy-
scale problems
(42a) - (42d)

Solve pore-
scale problems
(36) and (37)

Compute
Bn and H n

Solve the Darcy-
scale problem (42e)

Solve the
phase-field

problem (43)

Next time step

Figure 2. The two-scale scheme.

The two-scale scheme is presented in Figure 2. Observe that the time stepping in
(47) is explicit. For the spatial discretization, we consider TH , a Darcy-scale triangular
partition of the domain Ω. An element T ∈ TH has diameter HT . For each Darcy-scale
element T , the effective quantities are computed by solving the cell problems defined
in a pore-scale domain P. The triangular partition Th of P consists of elements Tµ of
diameter hTµ . We let H := max

T∈TH
HT and h := max

Tµ∈Th
hTµ . The numerical solutions of

the pore- and Darcy-scale problems (17), (37), (43), (46) and (48) are computed using
the lowest order Raviart-Thomas elements (see [47]). For the pore-scale problems (16)
and (36) we use the Crouzeix–Raviart elements (see [48, Section 8.6.2]).

To compute the evolution of the phase field accurately and, implicitly, of the effective
parameters, one needs a fine pore-scale mesh for each cell problem. This mesh needs
to be fine enough to resolve the diffuse interface zone of the phase-field. More details
on the mesh construction can be found in [49–51].
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5. Numerical results

In this section, we present two numerical experiments, carried out in the 2D case.
We consider the (Darcy-scale) domain Ω = (0, 1) × (0, 1

2) and take T = 1 as final
time. In both tests, a zero initial concentration is considered, c0 ≡ 0, while the initial
phase field φ0 does not change with the vertical Darcy-scale variable x2 (see below).
Therefore, the saturation S0, obtained from (26), depends only on the horizontal
variable, S0(x ) = f(x1). The function f is within the range [0.66, 0.86] (see Figure 3).

Every pore-scale domain Y has a centered inner grain G = (0.4, 0.6)×(0.4, 0.6). This
gives a constant porosity, Φ = 0.96. For each x ∈ Ω, the initial phase field φ0(x , ·) is
radially symmetric up to not being defined on G. Its value changes from -1 (fluid 2,
around G) to 1 (fluid 1, the outer part of P) in a thin, diffuse region around a circle.
The radius of it changes in the x1-direction but not in the x2-direction.

Homogeneous Neumann boundary conditions are imposed for c and p at the upper
and lower boundaries of Ω. The same applies for c at the right boundary. The pressure
and concentration are prescribed at the left boundary, p = pin = 2 and c = cin. In
the two tests, the only varying data is cin. At the right boundary, a lower pressure is
imposed, p = pout = 0, causing a horizontal flow to the right. Therefore, the left and
right boundaries are called in- and outflow boundaries. This is sketched in Figure 3.

in

in out

0.2 0.4 0.6 0.8

0.7

0.75

0.8

Figure 3. A sketch of the Darcy-scale boundary conditions and of the initial phase field at various locations
(left), and the corresponding initial saturation (right).

We use the following non-dimensional parameters

λ = 0.02, µ1 = 1, µ2 = 0.9, β = Ca = Eu = Re = Pec = Aφ = Aψ = 1,

and the given constant C = 3
2
√

2
. To illustrate the effect of the solute-dependent surface

tension, we let γ(c) = −(100c+ 1), and consider the following situations.

Test case 1. First we let c = cin = 0. Then, the concentration remains 0 during the
whole simulation.

Test case 2. With c = cin = 1, the concentration is increasing in time for every x ,
but remains decreasing in the x1-direction for any t.

For the numerical simulation we use ∆t = 0.04, thus carry out 25 time steps. For
the spatial discretization we construct a uniform Darcy-scale (coarse) mesh with mesh
diameter H = 0.1767. At the pore scale we consider a uniform (fine) mesh with mesh
diameter h = 0.0283.

In both test cases, the Darcy-scale solution components do not change with the
vertical variable x2. Therefore, these solutions are presented as a 1D projection/cut
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in the x1-direction. Also, to illustrate the evolution in time of various Darcy-scale
quantities, we choose x ref = (0.9167, 0.2917) as a reference Darcy-scale point. The
behaviour in other points is similar. Also, to compare the results obtained in the two
test cases, we present the evolution in time of the difference in the variables, calculated
at x ref. E.g. for the saturation S we compute

δS(t,x ref) := S(t,x ref)
∣∣
(TestCase2)

− S(t,x ref)
∣∣
(TestCase1)

,

for t ∈ [0, 1], and similarly for other Darcy-scale variables, or effective matrix compo-
nents and vector elements.
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Figure 4. The concentration c(t, ·) at five time steps for test case 1 (left-top) and test case 2 (left-bottom).

The evolution of c(·, x ref) for test case 2 (right).

The left plots in Figure 4 present the numerical approximation of the concentration
c for the two test cases. Observe that, as expected, c remains 0 everywhere in the first
test case. The right plot in Figure 4 shows the evolution of the concentration at the
Darcy-scale reference point x ref for the second test case.
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Figure 5. The saturation S(t, ·) at five time steps, for the test case 1 (left). The evolution of S(·, x ref) for

the test case 1 (right-top) and of the difference δS(·, x ref) between the two test cases (right-bottom).

The left plot in Figure 5 shows the numerical approximation of the saturation S
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for the test case 1. The saturation increases with time, but remains decreasing in the
x1-direction. The evolution in time of S(·,x ref) is presented in the upper right plot.
The lower right plot shows the difference in the saturations between the two test cases.
Note that the saturation S is lower in the second test case as it increases less with
time compared to the first test case. This is indirectly caused by the difference in
the surface tension, leading to, as we will see below, a difference in the φ-weighted
Darcy-scale velocity v̄φ.
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Figure 6. The horizontal component of the (Darcy-scale) velocity v̄φ(t, ·), computed at five time steps, for

the test case 1 (left). The evolution of v̄φ1 (·, x ref) for the test case 1 (right-top) and of the difference δv̄φ1 (·, x ref)

between the two test cases (right-bottom).

Due to the setup, the horizontal component of the Darcy-scale velocity v̄ will remain
constant over the domain. However, the velocity v̄φ can still vary, and, as follows from
(42c), this causes changes in the saturation. Moreover, this change becomes more
natural when considering (45), in which the phase velocity is depends on the (here,
constant) v̄ and the variable v̄φ. We note that the vertical component of v̄φ is zero,
hence only the horizontal component is shown in Figure 6. As we see from the left
plot in Figure 6, the horizontal component has a negative derivative with respect to x1

throughout the domain, yielding an increasing saturation. However, from the difference
shown in the lower right plot of Figure 6, the horizontal component of v̄φ is higher in
the test case 2 than in the test case 1. Hence, its derivative, though negative, is closer
to 0, yielding a smaller increase in the saturation. Note that the reference point x ref

is at the right part of the domain, and that saturation and velocity changes in points
further left are less than in x ref.
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Figure 7. The first component of Kφ(t, ·), computed at five time steps, for test case 1 (left). The evolution

of Kφ1,1(·, x ref) for the test case 1 (right-top) and of the difference δKφ1,1(·, x ref) between the two test cases, at

x ref (right-bottom).

Figure 7 and Figure 8 are displaying the evolution of the effective parameters from

(42d), which are influencing v̄φ1 . The left plot in Figure 7 displays Kφ1,1, while the time

evolution of M φ
1 is shown in Figure 8. Comparing the sizes, and accounting for the fact

that the horizontal pressure drop is around −2, and γ(c) is in the range [−101,−1],

it becomes clear that the horizontal pressure drop and the evolution of Kφ1,1 dominate

the changes in v̄φ1 in both test cases considered here. Observe that, similarly to v̄φ1 ,

Kφ1,1 increases with time in the right part of the domain, and stronger for the test case

2, causing a decreased divergence of v̄φ.
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Figure 8. The evolution of the first element of M φ(·, x ref) for the two test cases.
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Figure 9. The evolution of the pore-scale phase field in the test case 1 (left) and the difference of the phase

field δφ between the two test cases (right) corresponding to the Darcy-scale location x ref at time t = 1.

The changes of Kφ is depending on how the pore-scale phase-field evolves, which
again depends on the surface tension. In Figure 9 we display the pore-scale phase field
obtained at the final time t = 1, at the reference point x ref. The left plot in Figure 9
shows the numerical approximation of the phase field φ(1,x ref,y) and the pore-scale
velocity v(1,x ref,y) (with y ∈ P), obtained in the first test case. Note that the pore-
scale flow field is oriented mainly towards right. This immediately implies that the
Darcy-scale velocity v̄ has the same orientation. The difference in the phase fields
between the two test cases is displayed in the right plot. This difference is calculated
for t = 1 and at x ref, using

δφ(1,x ref,y) = φ(1,x ref,y)
∣∣
(TestCase2)

− φ(1,x ref,y)
∣∣
(TestCase1)

.

As follows from the right plot, the phase-field profile in the second case corresponds
to fluid 2 being shifted slightly to the left compared to the test case 1.

6. Conclusion

We have derived a two-scale model for the two-phase flow in a porous medium. The
model takes into account the variations in the surface tension, caused by a surfactant
soluble in one fluid phase. The starting point is the pore-scale model proposed in [30].
This is a Navier-Stokes-Cahn-Hilliard model for the flow, coupled with an advection-
diffusion equation for solute concentration. In this way, the free boundaries separating
the two fluid phases at the pore scale are approximated by thin diffuse interface regions,
which allows formulating the problem in a fixed domain.

Using formal homogenization methods, we have derived a two-scale model consisting
of mass conservation laws for the two phases and for the solute concentration, and of
Darcy-type laws for the effective velocities. The latter include terms accounting for
the concentration-dependent surface tension. These Darcy-scale laws involve effective
parameters, which are obtained by solving local cell problems. These cell problems
depend on the evolution of the phase field at the pore scale.

We have proposed a numerical algorithm building on the Euler explicit time dis-
cretization and on the lowest order Raviart-Thomas approximation in space. The
explicit scheme requires solving seven pore-scale cell problems, defined for each Darcy-
scale point. These cell problems depend on Darcy-scale variables concentration, pres-
sure and saturation. At the same time, for solving the Darcy-scale equations, one
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requires accurate calculations of the effective parameters, based on pore-scale quanti-
ties. These cell problems are generally small and parallelizable, allowing for efficient
numerical strategies. In particular, for the phase-field cell problem, which is nonlinear
and elliptic, we propose a simple, linear iterative scheme having a robust convergence,
regardless of the initial guess.

Two test cases are presented, where the surface tension either remains constant, or
where the changes in the concentration induce a varying surface tension. The fluids
have different viscosities, but the viscosity ratio is small. The profiles of the Darcy-scale
quantities display a similar behaviour in time and space in both test cases. Though
small, differences in the results can be observed. In particular, the surfactant leads to
decreased values of the saturation, as it affects the effective quantities, which depend
on the pore-scale phase-field distribution.

Open issues are related to mesh refinement strategies at both the pore scale and the
Darcy scale, as mentioned in [51]. Furthermore, adaptive strategies allowing to identify
Darcy-scale points where the effective parameters need to be recalculated, and those
where these values can be copied from points with a similar behaviour, could also
improve the efficiency of the algorithm. Finally, implicit or semi-implicit higher-order
numerical schemes for the two-scale model derived here need to be developed, as well
as the rigorous analysis of the model and of the numerical approximation.
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