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ADAPTIVE NUMERICAL HOMOGENIZATION OF NON-LINEAR
DIFFUSION PROBLEMS*
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ADRIAN RADUS

Abstract. We propose an efficient numerical strategy for simulating fluid flow through porous
media with highly oscillatory characteristics. Specifically, we consider non-linear diffusion models.
This scheme is based on the classical homogenization theory and uses a locally mass-conservative
formulation. In addition, we discuss some properties of the standard non-linear solvers and use an
error estimator to perform a local mesh refinement. The main idea is to compute the effective pa-
rameters in such a way that the computational complexity is reduced without affecting the accuracy.
‘We perform some numerical examples to illustrate the behaviour of the adaptive scheme and of the
non-linear solvers. Finally, we discuss the advantages of the implementation of the numerical ho-
mogenization in a periodic media and the applicability of the same scheme in non-periodic test cases
such as SPE10th project.

Key words. Flow in porous media, homogenization, upscaling, adaptive computations, non-
linear solvers, MFEM.
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1. Introduction. Non-linear parabolic problems are encountered as mathemat-
ical models for several real life applications. Examples in this sense are partially
saturated flow in porous media, non-steady filtration, and reaction-diffusion systems.
Realistic applications often involve heterogeneous media, which translate into highly
oscillatory coefficients and non-linearities. Letting Q° be a bounded, possibly perfo-
rated domain in R? (d = 2,3) with Lipschitz boundary and T > 0 a maximal time
with Q% := Q° x (0, T], we consider the non-linear diffusion equation

(LD) 9 (x,pF(x, ) — div (K°(x) Vp*(x,1) = f*(x,1), in O,

with suitable initial and boundary conditions.

In this setting, € is a positive small parameter and denotes the scale separation
between the micro-scale (e.g the scale of pores in a porous medium) and the macro-
scale (e.g the Darcy scale, the scale of simulation in case of heterogeneous media).
With the superscript 0 < € < 1 we indicate that the quantities involve highly oscil-
latory features and the medium is considered highly heterogeneous. Equation (1.1)
can for example represent the non-dimensional Richards’ equation after applying the
Kirchhoff transformation and without taking into account gravity effects (sce [7]). In
this case, the primary unknown p®(x,t) is the transformation of the fluid pressure. For
simplicity p®(x,t) will be called pressure in what follows. The given data include the
source f¢, the absolute permeability matrix K¢ and the volumetric fluid saturation
b, which is a given function of p°®.

The development of numerical methods capturing the interaction between scales
relies on high computational costs. The use of classical schemes over fine-scale meshes
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has often unreachable requirements. To capture the oscillations in the medium the
required mesh size would be very small compare to €. In this sense, the standard
numerical methods will either fail or become inefficient.

In consequence, there is a significant sct of techniques for handling simulations
that involve two or more scales in space and time. During the last years, approaches
like the multi-scale finite-volume (MSFV), the algebraic dynamic multilevel (ADM)
and the heterogeneous multi-scale (HMM) methods are becoming more and more
relevant. Concretely, the MSFV and ADM methods proposed in [21, 22, 25] aim to
solve problems involving different scales by incorporating the fine-scale variation into
the coarse-scale operators. The multi-scale finite volume method (FVM) proposed
in [22] is extended in [21] by including a dynamic local grid refinement method to
provide accurate and efficient simulations employing fine grids only where needed.
We highlight that the MSFV and ADM use a section of the fine-scale feature to
construct the macro-scale solution without estimations of the macro-scale parameters.
On the other hand, the HMM (sce [3, 40]) relies on coupled macro and micro-scale
solvers using homogenization (see [26]). This method takes advantage of the scale
separation and is based on the numerical approximation of the macro-scale data.
In [1, 2, 3] ideas on how to manage different scales in an efficient computational
way are developed, using the standard finite element method (FEM). Further, the
numerical computations using finite difference and discontinuous Galerkin method
also demonstrate the potential of this framework in [18, 40].

Recently, many other works have proposed improved multi-scale methods to sim-
ulate non-linear single-phase and multi-phase flow. Among the recent literature, we
emphasize the approaches in [5, 6, 23, 37, 41]. An Enhanced Velocity Mixed element
method is proposed in [41] to deal with non-matching, multi-block grids and cou-
ple micro and macro scale domains. In the same line of research [6, 23, 37] give a
computational strategy for the multi-scale dynamics over non-matching grids using
mesh refinement and enriched multi-scale basis functions. In [5], the homogenization
theory is combined with domain decomposition to obtain locally effective parameters
and solve macro-scale problems.

In this paper, we develop a locally mass-conservative scheme that computes the
homogenized permeability field of (1.1) over coarse meshes. In contrast with the pa-
pers mentioned before, we avoid the general grids and only use a-posteriori estimators
on the macro-scale solvers. We propose a combination of techniques supported in the
theoretical framework of the homogenization (see [26]) for non-linear parabolic equa-
tions. This strategy relies on the solution of micro-scale cell problems to calculate
averaged parameters that one uses in a macroscopic solver. The focus of this work
is to construct an efficient numerical strategy to approximate the solution of a non-
linear and homogenized macro-scale model. It is important to remark that, despite
the assumptions of periodicity that are needed in the classical homogenization the-
ory, the advantages of this upscaling technique can be exploited even in the case of a
non-periodic medium.

We apply the backward Euler (BE) method for the time discretization and the
mixed finite element method (MFEM) for the spatial discretization. In order to solve
the fully discrete formulation of (1.1), non-linear solvers are required. We discuss the
applicability of classical iterative solvers like Newton or Picard (see [8, 17]) and we
detail the formulation of a robust fixed point method called L-scheme proposed in
[31].

This linearization procedure has the advantage of being unconditionally conver-
gent. More exact, the convergence of the L-scheme is neither affected by the initial
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ADAPTIVE NUMERICAL HOMOGENIZATION 3

guess nor by the mesh size. Nevertheless, the convergence rate of the L-scheme is
only linear and therefore slower compared to the Newton scheme (see [33]). We men-
tion [28] for an approach combining the L and the Newton schemes in an optimized
way. There, the L-scheme is applied to provide a suitable initial point for the Newton
scheme. We use this strategy to improve the convergence of the scheme up to the
quadratic convergence. We also refer to [29] for a modified L-scheme featuring im-
proved convergence (compared to the L-scheme) and scalability properties (compared
to Newton and Picard).

For time dependent problems the idea of adaptive meshes is very useful to lo-
calize the computational error. On the other hand, reaching finer meshes becomes
computationally expensive because it requires extra calculations of the macro-scale
parameters. The finer the mesh for the upscaled model, the higher the computational
effort as the effective parameters need to be computed in more points, thus more cell
problems need to be solved. For this reason, we present an a-posteriori estimator
that indicates when the numerical solution and the effective parameters should be re-
computed. With this strategy we aim to control the convergence rate of the numerical
scheme and to avoid unnecessary computations of the local problems.

The main idea in this work is to exploit the advantages of the homogenization
theory, adaptive mesh refinement and linearization procedures to obtain an efficient
multi-scale solver for non-linear parabolic problems. The paper is organized as follows.
In Section 2 the details of the model, the geometry and the discrete formulation are
given and the necessary assumptions are stated. Section 3 gives a brief summary of
the standard procedure of the homogenization for a parabolic case in a periodic porous
media. There we also state the mixed and fully discrete formulation of the upscaled
problem. In Section 4 the adaptive technique based on a-posteriori error estimators
is introduced and in Section 5 the L-scheme is described. Finally, in Scctions 6
and 7 we discuss numerical tests in the quasi-periodic and non-periodic case and
some conclusions.

2. Model formulation and discretization. We consider the following non-
linear parabolic problem, which appears on models of single-phase flow through a
porous media

Ol (%, 97 (%, 1)) — div (K®(x) Vp© (x,t)) = f°(x,t), in QF,
(2.1) p°(x,t) =0, on IO,
p°(x,0) =pr(x), in Q°.

Here ¢ is a bounded domain in R? (d = 2,3) with boundary 99Q°. We denote
Q% := Q° x (0, T] and let n being the unit normal pointing outwards of Q°. Using
the superscript £ > 0 we emphasize on the fact that rapidly oscillating characteristics
are involved. For example, the domain either involves characteristics changing within
e-sized regions, or it may include perforation (like a porous medium).
Throughout this paper we use common notations from the functional analysis.
By LP(Q) we mean the space of the p—integrable functions with the usual norm.
We let (-,-) represent the inner product on L?(Qf). For defining a solution in a weak
sense we use the space H{(Q%) = {p € H'(Q°)|p=0on 097} with H; '(Q°) being
its dual.
We make the following assumptions:
(A1) The function b*(x,-) is non-decreasing, and b°(-,0) = 0.
(A2) The function b°(x,-) is Holder continuous: Constants « € (0,1] and L, > 0
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4 M. BASTIDAS, C. BRINGEDAL, 1.Ss. POP AND F.A. RADU

exist such that
0% (x, p1) — b(x,p2)| < Ly|p1 — pa2|®,
for all x € Q° and py, p2 € R.
(A3) The permeability function K= : Q° — R4*? is symmetric and continuous for
all x € Q°. Further, the constants 3, A > 0 exist such that

Bllll> < T K (x)p < A¢|*  for all » € R? and x € Q.

(A4) The initial data satisfies p; € L>(Q5) and the source term is f¢ € L>(Q5).
A weak solution for the problem (2.1) is defined as

DEFINITION 2.1. A function p® is called a weak solution of (2.1) if 9:b° (+,p°) €
L*(0,T; Hy ' (99)), p* € L?(0,T; HY (%)) and for all ¢ € L*(0,T; H3(Q°)) it holds

T
/0 <8Lb67€>H0*1(Q€)><H1(QE) dt+/0

We refer to [4] for the existence and uniqueness of the weak solution of the above
problem. As a consequence one can also prove that b (x,-) € L>(0,T; L'(Q°)) (sce
[4])-

2.1. Mixed formulation. In order to construct a robust and locally conserva-
tive scheme we consider the mixed formulation of (2.1). By defining u®(x) as the
Darcy velocity, the unknowns (p*,u®) € L?(0, T; H}(QF)) x L2(0,T; H(div, Q%)) sat-
isfy

T

T
(K* (2) Vp°, VE) dt = /0 (€ dr.

B, 17 (%, 1)) + div (u° (%, 6)) = f*(x,1), in 05,
u”(x,t) = =K (x) Vp“(x,t), in Qf,

22) p°(x,t) =0, on 007,
( ) =PI, in Qsa

with H (div, Q%) = {v € [L*(Q°)]¢| div(v) € L?(Q%)}. It can be proved that the mixed
variational formulation (2.2) is equivalent to the conformal formulation (2.1). We refer
to [32] for the proof in both continuous and semi-discrete cases.

2.2. The non-linear fully discrete problem. To define the discrete problem
we let - be a triangular partition of the domain Q° with clements 7 of diameter
h& and h® = 7_m%x h& such that h® < e. Further, 0 =1y <t <t; <--- <ty =T,

€

N € N is a partition of the time interval [0, T] with constant step size At = t;41 —t;,
7 > 0. For the discretization of the flux u® we consider the lowest-order Rav1art-
Thomas space Vie := RTo(Th-) and for the pressure p¢ we use the discrete subspace
of piecewise constant functions Wje (see [10]):

Whe := {q € L*(Ty:) | q is constant on each element T € T},
Vie = {v € Hy(div,Tp:) | vlr =a+bx for all T € Tp-, a € RY, b e R} .

The fully discrete mixed finite element formulation of the problem (2.1) is
Problem (PM). For a given ((p‘S)ZZ1 , (uE)ZE_I) € Whe X V= and n > 1. Find
(p°)}- € Whye and (uf)). € Vj= such that for any ¢ € Wje and v € Vj- there holds

(0 00 =07 (5 R ) ) + At (div(W)f) o) = At (f7q).

(2.3) X
(KT (@), v) = () div (v)) = 0.

This manuscript is for review purposes only.
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ADAPTIVE NUMERICAL HOMOGENIZATION 5

Where (pa)(})le is the L2-projection of the initial condition p; over the mesh Tpe. For
simplicity we omit writing the x argument in b°(x, p®), which becomes now b°(p).
Here we assume that a solution to the discrete problem (2.3) exists and is unique. For
details about this we refer the reader to [32, 35].

Note that the discrete problem (2.3) is non-linear, therefore a non-linear solver is
needed. This is detailed in Section 5.

3. Two-scale approach: Periodic case. Consider 2° as a bounded domain
in R? (d = 2,3) with Lipschitz boundary. We call micro-scale the region Y where
the parameters change rapidly. In other words, the parameters and non-linearities
take different values inside of Y (see Figure 1). In the extreme case, the micro-scale
Y can be viewed as a perforated region with a pore space and a solid grain (see e.g
[26]). Here we give the ideas for a non-perforated domains but this can be adapted
straightforwardly to perforated ones.

At the micro-scale Y and the macro-scale Q° we assume characteristic lengths ¢
and L respectively. The factor ¢ := % denotes the scale separation between the two
scales. To identify the variations at the micro-scale we define a fast variable y := Z.
For each macro-scale point x € (2° we use one micro-scale cell Y to capture the fast
changes in the parameters.

L

9
L 5
_
— D

=

F1G. 1. Two-scales scheme. Zoom in to the pore structure in R? where typical length sizes and
the multi-scale variables are indicated. (See [11]).

Y

In the non-dimensional setting, we assume that €2° can be written as the fi-
nite union of the local cells Y = [0,1]4. To be specific, we let 7 € Z? and Q°F =
U {E(;+ Y) \76 IE} for some set of vector indices Z, and the outer boundary of €2°
is 0QF.

In order to formulate a homogenized problem, we make the following assumptions:

(B1) There exists a function b : Q° x RY x R — R such that b (x,p°) := b(x, %, p°)
and b(x, -, p) is Y-periodic.

(B2) There exists a function K : ° x R — R%*¢ such that K°(x) := K(x, %)
where K(x,y) is symmetric and continuous for all (x,y) € Q°xY and K(x,-)
is Y-periodic. Further, the constants 3, A > 0 exist such that

Blwl* < ¢TK(x,y) ¢ < A[¢|*,  forallyp e RYx € Q° andy € Y.

Remark 3.1. Assumptions (B1) and (B2) are made in order to use the periodic
homogenization theory for developing the multi-scale approach (see [20]). On the
other hand, the assumptions (A1) to (A4) are required to formulate Theorem 3.2 (see
[4, 12, 30]).

3.1. The homogenization approach. A direct numerical approximation of the
problem (2.3) requires the usage of an extremely fine mesh to capture all the changes

This manuscript is for review purposes only.
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6 M. BASTIDAS, C. BRINGEDAL, 1.Ss. POP AND F.A. RADU

in the characteristics of the medium. In the following we consider an alternative
approach and compute an effective model involving only the essential variations of
the permeability matrix. Alternative approaches have also being considered, we refer
to [36] for one involving the harmonic average of the parameters. Such techniques are
rather suited for particular cases, e.g stratified media. However, our target is wider
and the technique used here is mathematically consistent. We refer to [20, 26, 39] for
a detailed presentation of the homogenization method.

Here, we restrict the presentation to the minimum needed for explaining the
approach. We assume that all quantities satisfy the homogenization ansatz theory.
For example p® can be formally expanded as power series in £ as

(31) pE (X7 t) = Po (X7 Yy, t) + EP (X7 Yy, t) + 82p2 (X7 Yy, t) R

X

where y = Z stands for the fast variable, x is the slow variable and each function
Pt Q°xY x (0,7] — R is Y-periodic w.r.t y. Additionally, the two-scale gradient
and divergence operators become

1 1
V=V,+-V, and div=div, + —div,.
€ €

Using (3.1), the two-scale operators and since b(x,y,p®) = b°(x,p°) one applies the
Taylor expansion of b(-, -, p) about py to obtain

(3.2) b — (divz + édivy) (K <vx + éw) (po + epr + 52p2)> +O0@E) = f

Equating similar terms in £ one gets that pg = pp(x,t) does not depend on y and is
in fact the macro-scale approzimation of the pressure p°(x,t).
To determine p; as a function of pg, for the terms of order O(¢~!) we can write

p1(x,y,t) = pi(x,t) + Z?Zl 9polxt) )i (x,y) where the function p; is an arbitrary

Oz
function of x and w? are the Y-periodic solutions of the following micro-cell problems
(3.3) ~V, - (K(x,y) (Vyw! +e;)) =0, forally € Y.

Here {ej}?:1 is the canonical basis of dimension d. To guarantee the uniqueness
of the solution we assume that w’? has the average 0 over the micro cells, that is,
Jy w(x,y) =0 for all x € Q.

To simplify the notation in the following we use p instead of pg for the macro-scale
approzimation of the pressure p®. Recalling the boundary conditions on the micro-
scale, the terms of order zero in (3.2) and averaging over Y one obtains the following
homogenized problem

O (x,p) — div (K*(x) Vp) = f*(x,t), in Qp:=Q x (0,T],
(3.4) p=0, on 09,
p(x,0) = pr, in Q.

The effective permeability K* : Q — R4*9 has the elements

K;,(x) = /y (K(x,y) (ej + Vyw’(x,¥))) -e;dy, (i,j=1,...d).

The upscaled saturation and source are

b*(x,p) :z/Yb(x,y,p)dy and  f*(x,t) :z/yf(x,y,t)dy.

This manuscript is for review purposes only.
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ADAPTIVE NUMERICAL HOMOGENIZATION 7

The difference between the original problem (2.1) and the approximated problem
(3.4) is subtle. In the original problem, the main characteristics are present at all
scales, in the complex domain and in a strongly coupled manner. The homogenized
model instead involves only essential variations at the macro-scale. However, to deter-
mine the value of the permeability tensor at a macro point x € €2, one has to solve d
micro-cell problems (3.3) associated with that macro point. Note that these problems
reflect the rapidly oscillating characteristics and are decoupled from the macro-scale
variations. From a computational point of view, the importance of this decoupling be-
comes obvious. Instead of solving the full problem, one solves a collection of simpler
problems. In general, analytic solutions are not available to compute the homoge-
nized parameters. Then K*, b* and f* must usually be computed numerically and
can therefore only be obtained at discrete points of the domain 2. This strategy was
also used in [1, 3, 5].

Concerning the existence and uniqueness of the weak solution of the homogenized
problem (3.4) we use the assumptions (Al) to (A4) and assumptions (B1) and (B2)
and refer to [4]. More precisely if there exists a constant 6 > 0 such that, for every §
and R with 0 < § < R there exists C'(d, R) > 0 such that

‘b(X7YJ/)1) - b(X7YJ/)2)‘ > 0(57 R)lpl - p2|07

forallx € Q°, y € Y and py, ps € [-R, R] with § < |p1], then the strong convergence
of p° to p is showed in the following theorem (see [12, 27, 30] for the proof).

THEOREM 3.2. Let p°® be a family of solutions of the problem (2.1). If p® is such
that sup, ||p®||L~(qz) < C with C > 0 and under the assumptions (A1)-(A4) and
(B1)-(B2), there exists a subsequence of p®, still denoted by p°, such that for all q
with 0 < g < 0o, we have, p° — p strongly in LY(Q1), where p solves (3.4).

Following the ideas mentioned in Section 2, defining u(x) as the upscaled Darcy
velocity, the upscaled unknowns (p,u) € L?(Q) x H(div, ) satisfy

Oub* (3, p(x, 1)) + div (u(x, 1)) = £ (x,1), in O,
u(x7t) = _K*(X) V])(X, t)a in QTa
(3.5)
p(x,t) =0, on 09,
p(x,0) = py, in Q.

Remark 3.3. If the original permeability K¢ satisfies (B2) then the effective tensor
K* is also symmetric and positive definite. Nevertheless, in the case of an initial
isotropic medium the effective permeability can contains anisotropies, (e.g the tensor
could be non-diagonal). However, in this case the non-diagonal components of K* are
neglectable and the diagonal elements are similar.

The non-linear discrete problem associated with the homogenized formulation
(3.5) is defined in the following.

3.2. The non-linear fully discrete homogenized problem. Let T be a
coarse-triangular partition of the domain © with coarse elements 7 of diameter Hy

and H := max Hy. For the discretization of the flux u we consider the lowest-order
€%y

Raviart-Thomas space Vi = RT(Ty) and for the pressure p we use the discrete
subspace of piccewise constant functions Wy (see [10]).

This manuscript is for review purposes only.
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8 M. BASTIDAS, C. BRINGEDAL, 1.Ss. POP AND F.A. RADU

Problem (PH,,). For a given (pz_l, uz_l) € Wy x Vg andn > 1, find pfy € Wy
and u}; € Vi such that for any gy € Wy and vy € Vi there holds

<b* (apz) —b* (':p?{il) 7qH> + At <d1V (Ll?]) ;qH> - At (f*‘qH> ;

(3.6) e .
<[K ] UH~,V11> — (P, div(vy)) = 0.

Again pY; is the L2-projection of the initial p; over the coarse mesh Ty. For simplicity
we omit writing the x argument in b*(x,p), which becomes now bv*(p). If b(x,y,p%)
has no micro-scale dependence b*(pl;) = |P|b(x, p};) and the same argument applies
for f*.

3.3. Micro-cell problem and micro-scale discretization. As mentioned be-
fore, the effective parameters must be computed at cach integration point on the coarse
triangulation T;;. The effective tensor K* depends on the solution of the micro cell
problems (3.3). To solve (3.3) we use the same MFEM scheme as for (3.4).

To approximate the solution of (3.3) we use a triangular decomposition T, of the
micro-scale domain P C Y with micro-scale mesh size h. For each integration point
x € T and T € Ty, the discrete micro-cell problem is

Problem (Ph;). Find (w],&)) € Wy, x Vj, satisfying

(div (&) .m) = (o),
(3.7) <[K(x, N _;jwvh> - <wfl,div (vh)> = 0,
w‘,il is Y — periodic,

for all g, € Wy, v, € Vi and j = 1,....,d.
After solving (3.7) we can compute the discrete effective permeability: K ,(x) =

(fy (K(x7y) (ej +§_;]l(y))) -e; dy) and use it to solve the discrete problem (3.6).

Note that these cell problems only need to be solved initially, or when the mesh
changes.

4. Adaptive numerical homogenization. The standard homogenization the-
ory applies for periodic media although its extension to random media is well un-
derstood (see e.g [2]). In practical cases, one does not have any structure in the
oscillations of the data. Nevertheless the computation of macro-scale parameters re-
mains a suitable idea. We propose to solve the micro-cell problems (3.7) and compute
the macro-scale parameters over a coarse mesh defined by the user. This procedure
consists in two steps:

e The macro-scale partition: Define a macro-scale division of the domain 2
with elements Qx, (k = 1,2,...,m), where m is the total number of coarse
cells.

e The micro-scale domains: Solve the micro-cell problems (3.7) over each coarse
element ;. Note that @ determines a micro-scale domain and there we
define a micro-scale mesh size h. The upscaled permeability that belongs to
each region @i highly depends on the choice of A.

Subsequently one can mesh the macro-scale domain and solve the homogenized prob-
lem (3.4). In Figure 2 we show the configuration of the macro and micro-scale partition
and the procedure described previously. Note that neither the macro-scale partition
nor the micro-scale mesh needs to be uniform.

This manuscript is for review purposes only.



336
337
338
339

340
341
342
343
344
345
346
347
348
349
350
351
352

ADAPTIVE NUMERICAL HOMOGENIZATION 9

i
ul-

Zo

Y1
€T

FiG. 2. Sketch of the macro-scale partition and the correspondent micro-scale discrelizalion in
a domain Q C R2. Different colours represent different values of the permeability.

4.1. A-posteriori error estimates. In the following we propose a four-step
strategy to localize the error of the numerical solution of the homogenized problem.
For this reason, it is necessary to compute a local error estimator 77 at each element
T € %y, . Choosing an error estimator 74 highly depends on the features of each
numerical method, the approximation, the post processing strategy, the implemen-
tation etc. Nevertheless, we refer to [14], where the equivalence between different
a-posteriori error estimators is analysed.

In the error control based on averaging technique [13, 15] the idea is to estimate
the error based on a smoother approximation to the discrete solution u’;. We define
a global error estimator 7 and an average operator 2,

1
N = min |[uf —v|z2@q and  Auiy(z) = A (uy) = —/ uy; dx
vevn |wz| W=

where w, = int (U{K € Ty, : KNT #0,z € T}) is the patch corresponding to the
point z € Q. It has been proven (see [13]) that the error [[u” —u}|/z2(q) is bounded
by [[uf; — v||z2(q) for any continuous and piecewise polynomial v. Then an upper
bound of 7 can be computed as

(4.1) [u™ —uf |2 < Cna +hot < Clluy — Auf |2 o) +hot

for some C' > 0 independent of the mesh size. After choosing this estimator and in
order to find the optimal macro-scale division to compute the effective parameters, as
well as the solution of the homogenized problem (3.4) we will use a mesh adaptivity
strategy.

4.2. Mesh adaptivity. We continue with a mesh adaptivity process using the
a-posteriori estimator (4.1). Our approach consists of the sequence: Solve - estimate
the error - select the cells/triangles - refine the mesh. The mesh refining generates a
sequence of triangular meshes (one mesh per time step).

(S1) Solve: The starting point is an initial coarse mesh Ty, and the approximation
of the pressure and velocity (pl;,ul;) that satisfy the discrete problem (3.6)
in the first time step.

(S2) Estimate the error: Let the solution (p%,,u?,) over Ty, be given. Locally,
an upper bound error estimator can be computed using the element-wise
contributions in (4.1), i.e (n}) := [[ufy — Au}||L2(7)-

(S3) Select the cells/triangles: An optimal mesh corresponds to a mesh where the
error is equidistributed. For this reason, the elements marked to be refined
are 7 € Ty, such that (see [16])

ny = © < max n,’é) with © € (0,1).

KeZmu,
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(S4) Refine the mesh: The last step of the refinement corresponds to including
new points and re-mesh. Our strategy avoids the possibility of nonconforming
meshes. We refine each selected cell in four new cells to compute four new
the effective permeabilities. Inside of the new finer cells we re-mesh with the
necessary triangles.

The outline of the steps (S1) to (S4) is presented in Figure 3 for the 2D case and
in 3D the refinement can be done as described in [24]. In Figure 3 we highlight that
at every time step it is necessary to make sure that in the new mesh each element
corresponds only to one permeability value. That restriction forces us to refine also
neighbouring elements and increases the resolution of the numerical solution.

(S1)-(S2) (S3) (54) (S4)-(S1)

FIG. 3. Outline of the a-posteriori refinement in R%. (Left to right) Initial effective permeability.
Initial triangulation and selected triangles to refine. Refinement of the permeability field. Refinement
of the triangular mesh.

With this strategy we allow to have more than one level of refinement, although
the homogenization theory only consider two levels. The threshold for the refinement
© can be chosen depending on the problem. We remark that higher values of © remain
into coarser meshes and less error control. In the numerical examples we show how
the refinement increase the accuracy of the parameters and the upscaled solution.

5. Linearization. A popular strategy to solve non-linear problems is Newton’s
method (see [8]). The reason to use Newton’s method is the quadratic convergence,
but we remark that quadratic convergence only arises under certain restrictions and it
is only locally convergent. For the Newton method, the initial guess for the iterations
must to be close enough to the expected solution for the scheme to be convergent.
For all these reasons, we will also use a fixed point iteration scheme, called L-scheme.
Although the L-scheme is only lincarly convergent, it has unconditional convergence,
meaning that it converges to the time-discrete solution regardless of the initial point
and it does not involve any derivatives (see [34, 31, 38]).

For a £ > max,cg {9,b*(-,p)}, assume pl;* given. With i € N, i > 1 being
the iteration index, the L-Scheme is introduced through: Find pZ’(l) c Wy and
u?{’(l) € Vi such that for any qg € Wi and vy € Vi there holds

<£ (p}}’“) - pvgwn) b (47],;3,(171)) 7qH>
(5.1) +At <div (U"H”(”> :qH> = At (f* qu) + b C.pi ) qn)

<u}3(i),vH> - <K* P div (VH)> =0.

Where the natural choice for the initial iteration pz’o is p’;]_l. In our non-linear solver
the iterations take place until one reaches a prescribed threshold for the L?-norm of
the residual dp};" := pZI’(” — pz’(l_l).

The use of an upper bound of d,b*(-,p) affects the convergence rate. For the

L-scheme the convergence rate is o = ﬁ for some C' > 0 and m < £ (see [31]).
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ADAPTIVE NUMERICAL HOMOGENIZATION 11

This leads to an extremely slow convergences in some cases (e.g large £ or small At).
For this reason in Section 6 we choose a smaller value £ = 1 max,er {9,b*(-, p)} which
still gives convergence (see [28]). For more results and analysis of the linearization
techniques we refer to [31, 28] and therein references.

6. Numerical results. We present two numerical examples in R? to illustrate
the behaviour of the proposed adaptive homogenization procedure. We first verify
our numerical homogenization approach using a manufactured periodic and quasi-
periodic media and subsequently use a non-periodic test case. Note that all parameters
specified in the following examples are non-dimensional and the pressures are also
shifted to lie between 0 and 1.

6.1. Periodic and quasi-periodic cases. Consider the macro-scale domain
Q = [0,1] x [0, 4] with initial condition po = 0 and no-flux boundary conditions. The
isotropic periodic permeability field is defined by

1
I
2+ 1.8 cos(2m L) cos(27rz—52)> e

K (x) = <1Ox%x2 +

A source and a sink are placed in the upper-right and the lower-left corners, having
fixed pressures of 1 and 0, respectively. The volumetric concentration is b°(x,p) =
R(p°)3. Here R is a non-dimensional constant that let us simulate a fast diffusion
process. For the time discretization we take 7' =1 with At = 0.02.

To solve the problem (5.1) with the necessary resolution to capture the oscillations
over Q the mesh size is restricted to be h® < . We use h® = 5 x 1073 to compute
the fine-scale solutions (pp-,up-) when ¢ = é, %6 and 3]—2 The reference solutions
are computed using the same MFEM, backward Euler scheme and the L.-scheme with
¢ =158 > mx(REYY)

Table 1 shows the history of convergence of the error for different values of ¢ and
three coarse meshes Ty without refinement and H > h¢. The relative L%-error ey
in Table 1is ey = e @r)=prlli2e,o/lpnl 25, ., Where Hp=(pu) is the projection
of the coarse-scale solution in the fine mesh €;,-. With this result we show that the
homogenized solution converges to the solution of the original problem when H — 0
and also when ¢ — 0.

Nevertheless, in the following we use a modified permeability field to ensure that
any assumption of periodicity is necessary. We include in the same domain Q a high
permeability region € and a low permeability region (2o where the permeability is
1072 and 1077 respectively.

0 :=[0.21,0.41] x [0.11,0.41] and Q5 := {x € Q°| [|x — [0.75,0.26][|» < 0.1%} .

In Figure 4 the normalized (quasi-periodic) permeability field is showed for two
values of the scale parameter . In this case the boundary conditions, the volumetric
concentration, the source term and the time discretization remain the same as before.
Figure 5 shows four levels of the first component of the effective permeability tensor
(K7 ;) starting with a coarse grid of 16 x 8 cells. Referring to the different levels of
the effective permeabilities is important to remark that the coarse-scale permeabilities
are computed in zones that not always match with the initial resolution or periodic-
ity. Here one can notice the influence of neighbouring macro-cells in the numerical
solution of the micro problems (3.7). This effect is evident at the boundary of the
low permeability zone Q5. To point out this behaviour in the Figure 5 we highlight
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3 H Relative error (e)
/g | 0.1768 0.1938
/s | 0.0884 0.1287
s | 0.0442 0.0856
/16 | 0.1768 0.1797
/16 | 0.0884 0.1138
/16 | 0.0442 0.0724
/32 | 0.1768 0.1690
/32 | 0.0884 0.1030
1/32 | 0.0442 0.0621

TABLE 1

History of convergence of the error for three values of € and three coarse meshes.

2.0

25

3.0

04 0.6
_ 1 . _ 1
£ =g and (right) e = 5 (Logio scale).

20 05 2.0
04

25 25
0.3

30 02 30
01

35 o 35

0.5 20 05 2.0
04 ——— ; TE] 04

. . . 2.5 2.5
0.3 i ] 0.3

02 g 02 5.0
01 —— 01

0 35 35

0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

F1G. 5. Coarse-scale permeability distribution (Logio scale) starting with a coarse grid of 16 X 8
cells. The red lines indicates the original location of the low permeability zone (K& = 10~7) and
high permeability zone (K& = 1072).

431 with a dashed lines the original location of the low and high permeability areas. The
432 numerical solution of the lineal upscaled problem (5.1) is showed in Figure 6. The
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433 upscaled solution is computed using the mesh adaptivity described in Section 4 using
434 the threshold for the mesh adaptivity © = 0.5. At the end of the adaptive process,
435 the relative L2-error of the upscaled pressure py, is 1.6% using only the 14.7% of the
436 original degrees of freedom.

Time = 3.2E-01 Time = 3.2E-01

1E-02

5E-03

0E+00
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time = 6.4E-01 i Time = 6.4E-01
X 0.8
1E-02
R 0.6
|
: 04 5E-03
2 0.2
0 0.0 " 0E+00
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
05 Time = 1.0E400 50 ] Time = 1.0E+00 ‘
04 0.8 0.4
: i 1E-02
0.3 0.6 0.3
0.2 04 02 503
0.1 0.2 0.1
0.0 0E O0E+00
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

F1G. 6. Adaptive homogenization at t = 16At, 32At, 50At. Pressure pg,, (left) and magnitude
of the velocity field ||ug,, ||2 (Tight) over meshes with 2.367, 5.950 and 9.659 coarse elements.

437 Furthermore, after the adaptivity process we obtain a refined version of the per-
438 meability field and Figure 7 shows the result of the refined permeability at ¢t = 1.
0.5
0.4
0.3
0.2

0.1

F1G. 7. Refined permeability field at t =1 (Logio scale).

439

440 Concerning the behaviour of the non-linear solver, our test case is an example
441 where the convergence of the Newton’s method highly depends of the initial guess.
442 However the convergence of the L-scheme is not optimal; i.e., even though the L-
443 scheme converges we do not want to lose the quadratic convergence of the Newton’s
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method. To compute the solution of the Figure 6 the linear solver using only the
L-scheme reaches the threshold [|6(pg)[]2 < 107'0 after an average of 70 iterations.
In order to improve the linear solver we use a mixed strategy (see [9, 29]). The target
is to construct an initial solution that suits a non-problematic starting point for the
Newton’s method. In this case we used the L-scheme until ||6(py)||2 < 1072 and then
the classic Newton’s method until one reaches ||§(pyr)||2 < 10710 (see Figure 8).

o

!
[

Loguo|3(p}; Iz
S

'
—
ot

Number of iterations

Fic. 8. Convergence of the residual in the non-linear solver. Results for four different times
steps using the L-scheme with £ = 1.5% and Newton’s method afterwards.

6.2. Non-periodic case. Here we consider a highly heterogeneous and non-
periodic medium. We utilize the data of the SPE Comparative Solution Projects [19].
This provides a vehicle for independent comparison of methods and a recognized suite
of test datasets for specific problems. Our isotropic permeability field K¢ is defined
by the top field of SPE10th data set (see Figure 9).

F1G. 9. Fine scale permeability distribution for SPE10th-TopLayer (Logio scale).

The macro-scale domain is a two-dimensional rectangle (see Figure 9). External
boundaries are impermeable; i.e., we take no-flux boundary conditions. The domain
is initialized with pressure py = 0. A source and a sink are placed in the lower-left
and the upper-right corners, having fixed pressures of 1 and 0, respectively.

Moreover, the volumetric concentration is b (x, (p°)) = R(p°)3. Here R is defined
as in subsection 6.1. For the time discretization we take 7" = 1 ;zvith At = 0.02 and
the parameter for the non-lineal solver is £ = 1. 5R M

The adaptivity criteria for the dynamic mesh reﬁnement described in Section 4,
is © = 0.2. In this case we choose a value of © smaller than in subsection 6.1 because
we address to capture more changes in the flux and those changes are related with
the heterogeneity of the medium. To solve the problem (5.1) with the resolution of
Figure 9 we construct a grid with 26.400 elements in a homogeneous triangular mesh
(The). In Figure 10 we show the reference solution (pp=,up=).

Using a coarse grid of 55 x 15 squares where we compute the first effective perme-
ability field. This coarse grid corresponds to a macro-scale mesh with 1.650 triangular
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Time = 1.0E400 Time = 1.0E400
1.0 s 2E-04
0.2
0.5 1E-04
0.1
0 0.0 0E-+00
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fic. 10. Fine scale pressure pp, (left) and (right) magnitude of the velocity field ||up||2.

170 elements. In Figure 11 we show the first component (K7 ;) of the coarse-scale perme-
171 ability field and this distribution is used afterwards to compute the first step of the
adaptivity procedure.

2 ™ T 0
i I ul & L. =
0.1 il = 4
0 = \:E E -6
0 0.6 0.8 1

FiG. 11. Coarse-scale permeability distribution (Logio scale).

In Figure 12 we show the difference between the effective permeabilities computed
with homogenization and using the harmonic average. The difference between these
strategies is higher in zones with high permeability and one can point out that the
harmonic average always underestimate the permeability. This is problematic because
the high permeability regions are regions where one should increase the accuracy of
the effective parameter in order to have better numerical solutions. When we compute
the numerical solution of (5.1) using the harmonic average of the permeability the
relative L?—error of the pressure is 12.3%.

~J
=W N

3

o

SRS S IS RS S|

0.15
0.10
0.05

0 0.2 04 0.6 0.8 1

FiG. 12. Difference between the coarse-scale effective permeabilities using homogenization vs
harmonic average.

480
481 Figure 13 shows the numerical solution of the upscaled problem (5.1) using the
182 mesh adaptivity described in section 4. At the end of the adaptive process, the relative
483 L2-error of the upscaled pressure prr is 4.72% using only the 16.5% of the original
484 degrees of freedom. Furthermore, using the adaptivity process we obtain a refined
485 version of the permeability field. Figure 14 shows the result of the permeability field
486 after the refinement process.
487 Finally, in Figure 15 we show the convergence of the norm of the residual (pg)
488  when one use a combination between the L-scheme and Newton’s method. Here
480 we use a mixed strategy (see [29]) to construct an initial solution that suits a non-
490 problematic starting point for the Newton’s method. In this case we use the L-
491 scheme until [|§(pg)||2 < 1072 and then the classic Newton’s method until one reaches
192 ||8(pr) |2 < 10710 and as we see in Figure 15 the quadratic convergence of the newton’s
193 method is recovered.
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Time = 3.2E-01 10 Time = 3.2E-01
02 02 sl T 4E-04
0.5 A
0.1 01 F s 2E-04
0 00 ks : 0E-+00
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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0.1 0.1 2E-04
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0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
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F1G. 13. Adaptive homogenization at t = 16At, 32At, 50At. Pressure pg, (left) and (right)
magnitude of the velocity field ||um, ||2 over meshes with 2.701, 3.573 and 4.353 coarse elements.

;! g
e | S8 -mmE -
04 0.6 0.8 1

F1G. 14. Refined permeability field at t =1 (Logio scale).

'
(&2

Loguo[|6(p3") |2
=

U
34

2 3 4 5 6 7
Number of iterations

FiG. 15. Convergence of the residual in the non-linear solver. Results for five different times
steps using the L-scheme with £ = 1.5% and Newton’s method afterwards.

7. Conclusions. We have proposed a numerical scheme based on homogeniza-
tion to solve a non-linear parabolic equation with highly oscillatory characteristics.
The discrete non-linear system is obtained by a backward Euler and lowest order
Raviart-Thomas mixed finite element discretization. Our approach utilizes a local
mesh refinement that leads to the computation of the effective parameters locally
through decoupled cell problems. With this we achieved to improve the accuracy of
the solution without compromising the efficiency of the method. The adaptivity is
based on the idea that the upscaled parameters are updated only when it is necessary.
Moreover, to illustrate the performance we have presented two general examples. We
construct a periodic case to show the history of convergence of the error when the
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504 scale separation tends to zero. In the non-periodic case we used a benchmark from
505 the SPE10th project and we showed that the homogenization can be used in general
506 cases.

507 In addition to the aforementioned, we combined the standard Newton’s method
508 and the L-scheme to improve the behaviour of the non-linear solvers. We presented a
509 combination of techniques that lead to a very efficient numerical scheme. It is relevant
510 to mention that besides the theory mentioned in this paper the applicability of this
511  strategy is vast. Extensions of our adaptive algorithm including more complex micro-
512 scale models are applicable. Those include from reactive transport up to moving
513 interfaces affecting the structure of the micro-scale.
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