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Abstract. We consider a model for the flow of two immiscible fluids in a two-dimensional thin
strip of varying width. This represents an idealization of a pore in a porous medium. The interface
separating the fluids forms a freely moving interface in contact with the wall and is driven by the
fluid flow and surface tension. The contact line model incorporates Navier slip boundary conditions
and a dynamic and possibly hysteretic contact angle law. We assume a scale separation between the
typical width and the length of the thin strip. Based on asymptotic expansions, we derive effective
models for the two-phase flow. These models form a system of differential algebraic equations for
the interface position and the total flux. The result is Darcy-type equations for the flow, combined
with a capillary pressure - saturation relationship involving dynamic effects. Finally, we provide
some numerical examples to show the effect of a varying wall width, of the viscosity ratio, of the slip
boundary condition as well as of having a dynamic contact angle law.
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1. Introduction. Many industrial and environmental processes, such as oil re-
covery, geological CO2 sequestration or groundwater pollution, strongly depend on
the flow in the respective porous medium. In all these applications, it is necessary to
describe the flow of all involved fluid phases at a macroscopic scale to allow for effi-
cient simulations in large domains. In particular, the complex pore structure and the
exact distribution of fluids are simplified into a representation by averaged quantities
such as the porosity and saturation. The relations between these macroscopic quan-
tities must be expressed with the help of effective parameters, which should combine
all pore-scale effects. However, in many state-of-the-art models these parameters are
postulated and not derived from a pore-scale model.

One of the earliest models for the macro-scale flow in a porous medium was pro-
posed by Darcy [18]. Based on column experiments for fully-saturated, single-phase
flow in a porous medium, a proportionality between the pressure gradient and the
velocity was observed, involving the medium’s permeability as proportionality factor.
Subsequently, further experiments by Richards [59] and by Morrow and Harris [52]
extended the theory to unsaturated and two-phase flow in porous media, respectively.
The resulting flow models still include Darcy’s law, with a then saturation-dependent
permeability. However, they additionally involved the phase-pressure difference, also
known as the capillary pressure, which appears due to surface tension between the
phases.

Based on experiments at equilibrium conditions, nonlinear, but monotonic cap-
illary pressure - saturation functions have been used for decades. However, already
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Morrow and Harris [52] showed that this relation also depends on the process — im-
bibition or drainage. Besides this hysteresis, further dynamic effects were reported in
many experiments [24, 64, 20, 13, 74], leading to a variety of non-monotonic curves
which cannot be combined into a simple capillary pressure - saturation function.

To overcome the mismatch between the experimental results and the mathemati-
cal models, several extensions of the capillary pressure - saturation relation have been
proposed. Typically, dynamic effects and hysteresis are directly expressed in terms of
spatial or temporal derivatives of the saturation leading to different capillary pressure
models, e.g. [53, 6, 7, 8], for an overview see [61]. Alternatively, the interfacial area was
introduced as an additional state variable leading to a capillary pressure - saturation -
interfacial area relationship that implicitly models the dynamic and hysteretic effects
via the change in interfacial area [29, 30]. Other hysteresis models are based on the
concept of percolating/nonpercolating phases [31, 32, 33]. These extended models are
able to reproduce non-monotonic phenomena like saturation overshoot and fingering
as shown in [69, 70, 51] by qualitative analysis using a travelling wave approach and
in [21, 46, 34, 41, 60, 75] by numerical simulations.

However, all models discussed above are considering the so-called Darcy scale, and
thus describe the average behaviour of the liquid phases disregarding the detailed pore
structure and processes at the pore scale. It is crucial to understand the dependence
of the effective parameters on the underlying pore structure. At the pore scale, the
mathematical model can incorporate the detailed physical processes, but it is posed
in the entire pore space, which is extremely complex, and needs to account for all
interfaces between phases. Resolving the whole complicated pore space of realistic
scenarios in direct numerical simulations is infeasible, so that further simplifications
are necessary to link the properties of the different scales.

To approach this task, there exist a large variety of analytical upscaling tech-
niques, see [17] for an overview. The volume averaging method has been used to
derive effective equations for quantities at the level of a representative elementary
volume, while restricting the form of constitutive equations using the second law
of thermodynamics at the Darcy scale. This method has been successfully applied
to single-phase and two-phase flow in porous media in [28, 73, 55]. However, the
technique does only provide explicit expressions for the effective parameters in the
constitutive equations via closure problems, when additional assumptions are made.
Alternatively, the homogenization method is a (matched) asymptotic expansion ap-
proach for typically periodic systems, where there is a clear scale separation. The
idea is to approximate the problem involving a small parameter ε (e.g. the ratio of an
average pore diameter to a Darcy-scale length) by the limit problem and its solution
as ε → 0. For an introduction to this method, we mention [36] and the references
therein. Many results for flow in porous media have been obtained by homogenization,
see e.g. [3, 1, 2, 48, 50, 49, 62], leading either to explicit expressions or to so-called cell
problems for the effective parameters. In both cases, knowledge of the underlying pore
structure allows for the explicit computation of the effective parameters. Therefore,
we apply the homogenization method to explicitly derive effective relations.

Here we consider a simplified geometry, namely the flow through a single, long
and thin pore as a representative for the porous medium. Despite the very simplistic
representation, the upscaling of thin-strip models typically leads to Darcy-scale mod-
els with the same structure as well-recognized Darcy-scale models in general porous
media, see e.g. [50, 49, 54, 62]. Additionally, using a single pore allows for the explicit
derivation of closed-form expressions for the upscaled quantities. We assume that
the pore is filled by two incompressible and immiscible fluid phases. The interface
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separating the two fluids is traversal to the flow direction. The mathematical model
consists of conservation laws for mass and momentum in time-dependent domains rep-
resenting the fluids. Assuming a horizontal setting, we disregard gravity effects. The
evolution of the interface separating the domains is not known a priori, but depends
on the velocities of the fluids and on the surface tension between the fluids. Hence,
the development of the boundary of the domains must be accounted for, and we have
a free boundary problem.

While the fluid domains are assumed to be layered in [50, 49, 54, 62], such that the
fluid-fluid interface does not come into contact with the solid wall, we here consider
the case when the interface is in contact with the pore walls. This requires a contact
angle model, which is allowed to be dynamic or even hysteretic. In particular, this also
implies that each fluid is only present either at the inlet or at the outlet. Note that the
plug flow scenario considered in [54] has a similar fluid distribution, but the authors
assume a fixed interface shape and a residual thin-film, which yields dynamics that
are very different from those generated by a variable interface with moving contact
line. Furthermore, we allow for a slowly varying solid wall instead of a constant-width
strip or tube used in [50, 49, 54, 62].

Based on the discussed pore-scale model, we derive upscaled (Darcy-scale) models
for two-phase or unsaturated single-phase flow in a porous medium under reasonable
assumptions on the underlying physics. We follow the ideas in [50, 49, 62], where
asymmetric expansions and transversal averaging is applied to obtain a macro-scale
model based on the simple, layered pore. We complement this with volume averages to
account for the different geometry and fluid distribution. A similar strategy has been
used to show that the upscaled models significantly differ for different flow regimes
assuming stationary fluid-fluid interface shapes in [54], and in [62] when assuming a
layered, parallel flow regime. In general, the thin-strip approach allows the derivation
of explicit relations between the averaged quantities, while various additional features
and processes can be easily incorporated, see e.g. [62, 71, 45, 14].

This paper is organized as follows. In section 2 we formulate the mathematical
model for two-phase flow with evolving interface in a thin strip, which is then rescaled
to obtain a non-dimensional formulation. Next, we formally derive in section 3 the
effective models in the bulk domains and close to the interface when the ratio between
the width and length of the thin strip approaches zero. These models form a system of
differential algebraic equations for the interface position and the total flux. Based on
the derived models, we discuss averaged and effective quantities and their relations in
section 4. In particular, there holds a Darcy-type equation for the flow and a capillary
pressure - saturation relationship involving dynamic effects. Finally, section 5 provides
some numerical examples showing the behaviour of the effective models for a constant
as well as a varying wall width. The effect of the viscosity ratio, of the slip length
and of having a dynamic contact angle law are discussed in detail.

2. Mathematical Model. We consider a two-dimensional thin strip of length
L > 0, which is axisymmetric at Γ̂sym := [0, L] × {0}. Let ŵ : [0, L] → (0,∞)
be a given smooth function (which is bounded away from zero), that describes the
wall Γ̂w := {x̂ ∈ (0, L) × (0,∞) | x̂2 = ŵ(x̂1)}. Here and in the following, the
subscripts ·1 and ·2 denote the components of a vector. Then the domain of interest
is Ω̂ := {x̂ ∈ (0, L) × (0,∞) | x̂2 < ŵ(x̂1)}. At each time t̂ ∈ [0,∞), the domain is
partitioned into two subdomains Ω̂I(t̂) and Ω̂II(t̂), which represent the parts occupied
by the two fluids; one at the inlet boundary Γ̂in := {0} × [0, ŵ(0)] and the other at
the outflow boundary Γ̂out := {L} × [0, ŵ(L)]. For an illustration of the geometry,
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Figure 2.1. Sketch of the half thin strip Ω̂ filled by two fluids with interface Γ̂(t̂) at time t̂.

see Figure 2.1.
We consider the particular case when the two fluids are separated by an ax-

isymmetric fluid-fluid interface Γ̂(t̂) := ∂Ω̂I(t̂) ∩ ∂Ω̂II(t̂), which is in contact with the
solid wall Γ̂w. This interface has an a-priori unknown location and shape, and there-
fore appears as a free boundary in the mathematical model. It is parametrized by
γ̂ : [0,∞) × [0, 1] → Ω̂, such that Γ̂(t̂) = {γ̂(t̂, s) | s ∈ [0, 1]}. The parametrization
starts at the symmetry boundary and ends at the wall, i.e.,

γ̂2(t̂, 0) = 0, γ̂2(t̂, 1) = ŵ(γ̂1(t̂, 1)).(2.1)

The point x̂∗(t̂) := γ̂(t̂, 1) is the so-called contact point.
At all boundaries of Ω̂, the outward normal and tangential unit vectors are de-

noted n and t with an index specifying the part of the boundary, e.g. nsym for the
normal vector at the symmetry boundary Γ̂sym. At the fluid-fluid interface Γ̂(t̂),
the normal unit vector pointing from Ω̂I(t̂) into Ω̂II(t̂) is denoted by nΓ, while the
tangential unit vector is tΓ. Therefore, these vectors are given by

tΓ = ∂sγ̂
|∂sγ̂| = 1√

(∂sγ̂1)2+(∂sγ̂2)2
∂sγ̂, nΓ = ∂stΓ

|∂stΓ| = 1√
(∂sγ̂1)2+(∂sγ̂2)2

(
∂sγ̂2

−∂sγ̂1

)
,

tw = − 1√
1+(∂x̂1

ŵ)2

(
1

∂x̂1
ŵ

)
, nw = 1√

1+(∂x̂1
ŵ)2

(
−∂x̂1

ŵ
1

)
,

tsym = ( 1
0 ), nsym =

(
0
−1

)
,

tin =
(

0
−1

)
, nin =

(−1
0

)
,

tout = ( 0
1 ), nout = ( 1

0 ).

In each sub-domain Ω̂m(t̂), m ∈ {I, II}, we assume that the flow is modelled by
the incompressible Navier-Stokes equations, which are written in dimensional form

ρm
(
∂t̂ûm + (ûm · ∇̂)ûm

)
+ ∇̂p̂m = µm∆̂ûm in Ω̂m(t̂),(2.2)

∇̂· ûm = 0 in Ω̂m(t̂),(2.3)

where ûm(t̂, x̂) and p̂m(t̂, x̂) are the velocity and pressure of fluid m. The parameters
ρm and µm denote the density and the dynamic viscosity of the fluid. The symmetry
conditions at Γ̂sym,m(t̂) := Γ̂sym ∩ ∂Ω̂m(t̂) are

ûm · nsym = 0, tsym ·
(
∇̂ûmnsym

)
= 0 on Γ̂sym,m(t̂),(2.4)

∇̂p̂m · nsym = 0 on Γ̂sym,m(t̂),(2.5)
nΓ · nsym = 0 at s = 0.(2.6)
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The walls Γ̂w,m(t̂) := Γ̂w ∩ ∂Ω̂m(t̂) in contact with fluid m ∈ {I, II} are assumed
impermeable, such that there is no fluid flow in normal direction, i.e.,

ûm · nw = 0 on Γ̂w,m(t̂).(2.7)

Traditionally, this is complemented with the no-slip condition ûm · tw = 0 under
the assumption that the fluid adheres to the wall. However, the no-slip condition
leads to a singularity in the pressure and in the shear stress at the contact point
x̂∗(t) between wall Γ̂w and interface Γ̂(t̂) [39, 23, 22]. To overcome this issue, several
alternative boundary conditions have been proposed for use close to the contact point
(or contact line in three dimensions), see [57, 12, 65] and the references therein. Here,
we consider the Navier-slip condition

tw ·
(
ûm + 2λ̂D̂(ûm)nw

)
= 0 on Γ̂w,m(t̂),(2.8)

where D̂(û) := 1
2 (∇̂û+(∇̂û)T ) denotes the symmetric strain and λ̂ is the slip length.

This condition has been proposed originally by Huh and Scriven [39] to resolve the
contact-line problem, and has been frequently used [35, 38, 19, 27, 63, 58]. Often, the
Navier slip condition is only applied close to the contact point. In this case, a variable
slip length λ̂(x̂1) is adopted, decaying rapidly to zero away from the contact point
x̂∗(t̂), see e.g. [25, 16, 27, 4]. This seems justified by molecular dynamics simulations
showing that the no-slip boundary condition is only violated in a small region (up
to some nm) around the contact point [43, 44, 68, 67, 42]. Additionally, surface
wettability and roughness strongly affect the slip behaviour, see e.g. [40, 47, 5, 26] for
a mathematical analysis.

Remark 2.1. To be general, we will consider two cases here: a constant slip length
λ̂ on the whole wall Γ̂w, or a varying slip length λ̂(t̂, x̂1) = λ̂0 exp(−c|x̂1 − x̂∗1(t̂)|)
which decreases exponentially away from the contact point x̂∗(t̂). Note that the
overall dynamics of the two-phase system will be independent of the latter, local
slip condition, and especially of the exact form used; only the flow field close to
the interface will be affected, see section 3. This is in accordance with the results
in [22, 63]. Furthermore, for smooth solutions the continuity of the fluid velocities
(2.10) across the interface Γ̂(t̂) and the Navier slip condition (2.8) at the wall Γ̂w,m(t̂)

only holds, if the slip length λ̂ at the contact point x̂∗(t̂) is the same in both fluids.
Therefore, we consider the same slip length λ̂ for both fluids, although they could in
principle differ.

At the contact point x̂∗(t), the contact angle θ between the wall Γ̂w(t̂) and the
fluid interface Γ̂(t̂) must be prescribed. Minimization of the total surface energy
yields the well-known Young’s relation σI−σII = σ cos θs, where σI and σII denote the
surface tension coefficients between the solid and the two fluids, and σ the interfacial
tension between the two fluids. The angle θs is called the static contact angle and
measured from the side of fluid II, as shown in Figure 2.1. Experiments performed
under dynamic conditions show a dynamic behaviour of the contact angle. This is
expressed as an apparent contact angle θ, and has a major influence on the overall
flow dynamics [10]. In general, observations show increasing advancing angles, but
decreasing receding angles, when the contact-line velocity U increases [22, 9]. The
θ-U relation is essentially monotonic.

There are mainly two models to describe this phenomenon: the hydrodynamic
theory and the molecular kinetic theory, for detailed reviews see [10, 56, 12]. The
hydrodynamic theory emphasises on dissipation due to viscous flow within the wedge
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of liquid near the moving contact line. The region close to the contact point is analysed
based on asymptotic expansions [35, 72, 37, 22, 19, 16]. For two-phase flow this yields
the well-known Cox law g(θ) = g(θs)+CµU/σ for the dynamic contact angle θ, where
U denotes the contact line velocity, the constant C depends on the specific slip model,
and g is an analytically derived function, which can be approximated by g(θ) ≈ θ3

for small angles [16]. The other approach is the molecular kinetic theory, where the
dissipation is described due to the dynamic friction associated with the moving contact
line. This yields the relation U = C1 sinh(C2σ(cos θs − cos θ)) with the constants C1

and C2 depending on molecular properties [11, 15, 9]. After linearisation for small
differences in the angles, one obtains U = Cσ(cos θs− cos θ) for some constant C [10].

As for the slip length, the contact angle is strongly affected by surface wettability
and roughness. In [10, 56], the resulting effects are made responsible for contact angle
hysteresis, i.e., that static contact angles can be achieved in the whole range θr <
θs < θa, where θa, θr denote the advancing and receding contact angles, respectively.
Summarizing all the above results, we assume the contact angle θ to depend on the
velocity −∂tx̂∗(t) ·tw of the contact point parallel to the wall. Recall that x̂∗ = γ̂|s=1,
so this contact angle condition is expressed as

cos(θ(−∂tγ̂ · tw|x̂1=γ̂1
)) = tΓ · tw

∣∣
x̂1=γ̂1

at s = 1,(2.9)

where θ : R → (0, π) is a given dynamic contact angle model. Note that any dy-
namic contact angle model that satisfies assumption (A5) below can be used. Specific
relations for hysteretic θ and their effect on the behaviour will be discussed in subsec-
tion 3.4. Furthermore, to account for heterogeneities, the following analysis can be
straightforwardly extended to the case when the contact angle also depends on the
position x̂∗1(t) of the contact point.

At the interface Γ̂(t̂), there holds continuity of the velocity and of the tangential
stress, while the jump in the normal stress is caused by the surface tension

ûI = ûII on Γ̂(t̂),(2.10)

−(p̂I − p̂II)nΓ + 2
(
µID̂(ûI)− µIID̂(ûII)

)
nΓ = σκ̂nΓ on Γ̂(t̂),(2.11)

where κ̂ =
det(∂sγ, ∂

2
sγ)

|∂sγ|3 is the local mean curvature of the interface. Note that this
curvature generalizes to ∇̂·nΓ for three-dimensional domains. The interface moves
according to the normal velocity of the fluids,

∂t̂γ̂ · nΓ = ûI · nΓ on Γ̂(t̂).(2.12)

At the inlet boundary Γ̂in, either the pressure p̂in or the velocity ûin is given, namely
either

p̂I = p̂in, ûI · tin = 0 or ûI = ûin on Γ̂in,(2.13)

while an outflow boundary condition is applied at Γ̂out (corresponding to p̂out = 0)

p̂II = 0, ûII · tout = 0 on Γ̂out.(2.14)

The problem is closed by the initial conditions γ̂
∣∣
t̂=0

= γ̂0 for the position of the
interface Γ̂(0) and ûm

∣∣
t̂=0

= ûm,0 for the velocity in Ω̂m(0). In the following, we
will omit the initial conditions and implicitly require them to match the asymptotic
solutions in section 3 to avoid possible initial layer solutions for small times.
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2.1. Dimensionless Formulation. To quantify the importance of the different
terms of the model, we rewrite the equations in a dimensionless form. As we consider
a single, thin pore, we introduce the small parameter ε = ŵ(0)/L� 1 which charac-
terizes the ratio of the typical width to the length of the thin strip. Note that in a
general porous medium, ε would reflect the ratio of the size of a pore to the length
scale of a representative elementary volume. With this, we rescale the governing
equations using the dimensionless quantities

x1 := x̂1

L , x2 := x̂2

ŵ(0) = x̂2

εL , t := t̂U
L , λε := λ̂

ŵ(0) = λ̂
εL ,

γε1(t, s) := γ̂1(t̂,s)
L , γε2(t, s) := γ̂2(t̂,s)

ŵ(0) = γ̂2(t̂,s)
εL , wε(x1) := ŵ(x̂1)

ŵ(0) = ŵ(x̂1)
εL ,

θε(v) := θ(vU), uεm(t,x) := ûm(t̂,x̂)
U , pεm(t,x) := p̂m(t̂,x̂)ε2L

µIU
,

where U > 0 denotes a characteristic velocity. In particular, the pressure reference
µIU/(ε

2L) is chosen such that pressure and viscous stress terms in (2.2) are balanced.
For moderate Reynolds number, this choice ensures laminar flow driven by the pres-
sure gradients, which is crucial for the validity of Darcy’s law on the Darcy scale.
Note that the coordinates x1 and x2 are scaled differently to obtain a domain of order
1, O(ε0). Hence, the non-dimensional differential operators are

∇ε=
(

∂x1

ε−1∂x2

)
, ∆ε= ∂2

x1
+ ε−2∂2

x2
,

and the divergence changes accordingly. The non-dimensional domains and bound-
aries become

Γε(t) = {γε(t, s) | s ∈ [0, 1]}, Ωε= {x ∈ (0, 1)× (0,∞) | x2 < wε(x1)},
Γεin = {0} × [0, 1], M := {O ⊂ Ωε\ Γε(t) |O ∪ Γεin is connected},

ΩεI(t) =
⋃
O∈M

O, ΩεII(t) = Ωε\ (Γε(t) ∪ ΩεI(t)), Γεout = {1} × [0, wε(1)],

Γεsym,m(t) = {x ∈ ∂Ωεm(t) | x2 = 0}, Γεw,m(t) = {x ∈ ∂Ωεm(t) | x2 = wε(x1)}.

After the rescaling of (2.1)–(2.14), the dimensionless equations read

ε2Re
(
∂tu

ε
I + (uεI · ∇

ε)uεI
)

+∇εpεI = ε2 ∆εuεI in ΩεI(t),(2.15)

ε2RRe
(
∂tu

ε
II + (uεII · ∇

ε)uεII
)

+∇εpεII = Mε2 ∆εuεII in ΩεII(t),(2.16)
∇ε·uεm = 0 in Ωεm(t),(2.17)

uεm · nsym = 0, tsym · (∇εuεmnsym) = 0 on Γεsym,m(t),(2.18)

∇εpεm · nsym = 0, on Γεsym,m(t),(2.19)

either pεI = pεin, uεI · tin = 0, or uεI = uεin on Γεin,(2.20)
pεII = 0, uεII · tout = 0 on Γεout,(2.21)

tεw · (uεm + 2ελεDε(uεm)nεw) = 0, uεm · nεw = 0 on Γεw,m(t),(2.22)

∂t

(
γε1
εγε2

)
· nεΓ = uεI · nεΓ, uεI = uεII on Γε(t),(2.23)

−(pεI − pεII)nεΓ + 2ε2
(
Dε(uεI)−MDε(uεII)

)
nεΓ = ε2

Caκ
εnεΓ on Γε(t),(2.24)

nεΓ · nsym = 0 at s = 0,(2.25)

cos(θε(−∂tγε · tεw|x1=γε1
)) = tεΓ · tεw

∣∣
x1=γε1

at s = 1,(2.26)
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for m ∈ {I, II}, where

Re = ρIUL
µI

> 0, Ca = µIU
σ > 0, M = µII

µI
> 0 and R = ρII

ρI
> 0

denote the effective Reynolds number, the capillary number and the viscosity and
density ratio, respectively.

The non-dimensional strain is given by Dε(uε) = 1
2 (∇εuε + (∇εuε)T ) and the

transformed normal and tangential vectors are

tεw = − 1√
1+ε2(∂x1

wε)2

(
1

ε∂x1
wε

)
, nεw = 1√

1+ε2(∂x1
wε)2

(
−ε∂x1w

ε

1

)
,

tεΓ = 1√
(∂sγε1)2+ε2(∂sγε2)2

(
∂sγ

ε
1

ε∂sγ
ε
2

)
, nεΓ = 1√

(∂sγε1)2+ε2(∂sγε2)2

(
ε∂sγ

ε
2

−∂sγε1

)
.

Furthermore, the non-dimensional curvature is given by

κε=
ε det(∂sγ

ε, ∂2
sγ

ε)

((∂sγε1)2+ε2(∂sγε2)2)
3/2 =

ε(∂sγε1∂
2
sγ
ε
2−∂sγε2∂2

sγ
ε
1)

((∂sγε1)2+ε2(∂sγε2)2)
3/2 .

Remark 2.2. Integrating (2.17) for m = I over Va = {x ∈ ΩεI(t) | x1 < a} for
any a < mins∈[0,1] γ

ε
1(t, s) yields by the Gauss theorem and the boundary conditions

(2.18) and (2.22)

0 =

∫
Va

∇ε·uεIdx =

∫
∂Va

uεI · nds =

∫ wε(a)

0

uεI,1
∣∣
x1=a

dx2 −
∫ 1

0

uεI,1
∣∣
x1=0

dx2.

Denoting the total flux into the half strip by qε(t, 0) :=
∫ 1

0
uεI,1(t,x)

∣∣
x1=0

dx2, we obtain

that for all a < mins∈[0,1] γ
ε
1(t, s) the total flux qε(t, a) :=

∫ wε(a)

0
uεI,1
∣∣
x1=a

dx2 = qε(t, 0).
Analogously, integrating (2.17) form = I over ΩεI(t) and form = II over Va = {x ∈ ΩεII |
x1 < a} for any a > maxs∈[0,1] γ

ε
1(t, s) yields by the Gauss theorem, the boundary

conditions (2.18) and (2.22) and the continuity of velocity at the interface (2.23) that

0 =

∫
ΩεI

∇ε·uεIdx+

∫
Va

∇ε·uεIIdx = −qε(t, 0) +

∫ wε(a)

0

uεII,1
∣∣
x1=a

dx2,

i.e., the total flux q(t, a) :=
∫ wε(a)

0
uεII,1

∣∣
x1=a

dx2 = qε(t, 0) for all a > maxs∈[0,1] γ
ε
1(t, s).

Within the interval [mins∈[0,1] γ
ε
1(t, s),maxs∈[0,1] γ

ε
1(t, s)], the same calculation shows

that the sum of the two fluxes over the respective parts of the domain equals the total
flux qε(t, 0). This means that the total flux is independent of x1, so we will simply
use qε(t) in this result for the subsequent analysis.

3. Asymptotic Expansions. In this section, we derive the formal solution for
the two-phase flow system (2.15)–(2.26) in the asymptotic limit as ε → 0, i.e., the
behaviour in the limit when the thin strip becomes infinitely thin. We start with
the solution in the bulk domains Ωεm(t), m ∈ {I, II}, away from the interface Γε(t),
where either fluid I or II is present, respectively. In the subsequent section, we show
that these bulk solutions are connected via a boundary layer solution in the vicinity
of Γε(t). Altogether, the solution is of Hagen-Poiseuille type in the bulk coupled by
a dynamic Young-Laplace law at the interface, such that the interface position and
the total flux are given by differential algebraic equations. Furthermore, we show
that the solution for vanishing viscosity ratio M → 0 matches the asymptotic limit
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for unsaturated one-phase flow. Finally, a reformulation for hysteretic contact angle
models is discussed.

For the following analysis we use an asymptotic expansion technique with respect
to ε to derive effective models. All variables are assumed to be smooth and to depend
regularly on ε starting with the leading order O(ε0). We apply the homogenization
ansatz

uεm(t,x) = u0
m(t,x) + εu1

m(t,x) +O(ε2),

pεm(t,x) = p0
m(t,x) + εp1

m(t,x) +O(ε2),

γε(t, s) = γ0(t, s) + εγ1(t, s) +O(ε2),

for m ∈ {I, II}. Inserting the asymptotic expansions into the two-phase flow equations
(2.15)–(2.26) and equating terms of the same order in ε, we will obtain the asymptotic
equations and solutions in the limit as ε→ 0. To this end, we need some assumptions
on the parameters of the model.

(A1) The Reynolds number Re and its product with the density ratio R are uni-
formly bounded for all 0 < ε � 1, i.e., there exists C ∈ (0,∞) such that
Re ≤ C and RRe ≤ C independent of ε. In other words Re = O(ε0) or
Re = o(ε0), and RRe = O(ε0) or RRe = o(ε0).

(A2) The viscosity ratio M of the fluids is of order 1, M = O(ε0).
(A3) According to Remark 2.1, the slip length λε has the form

λε(t, x1) = λ0 + λe exp

(
−|x1 − x∗1(t)|

ε

)
,

for given constants λ0, λe ≥ 0 that are independent of ε. Moreover, there
holds either λe = 0, or λ0 = 0. Note that the latter represents the case of
rapidly decaying slip away from the interface, so that λε has the expansion
λε(t, x1) = O(εN ) for arbitrary N ∈ N as long as x1 − x∗1(t)� ε.

(A4) The wall function wε has a uniform expansion

wε(x1) = w0(x1) + εw1(x1) +O(ε2),

where w0 : [0, 1] → (0,∞) is continuously differentiable (and thus bounded
away from zero). Furthermore, there holds ∂x1

w0(1) = ∂x1
w0(1) = 0.

(A5) The contact angle relation θε has a uniform expansion

θε(u) = θ0(u) + εθ1(u) +O(ε2),

where θ0 : R→ (0, π) is Lipschitz-continuous.
(A6) If the velocity boundary condition uεI = uεin is used at the inlet Γεin, the

velocity is given by

uεin(t,x) =

(
3q(t)

(1+2λ0)−x2
2

6λ0+2 +O(ε)

O(ε2)

)
,

where q : [0,∞)→ R is a continuous function independent of ε.
As will be seen below, (A1) ensures that the flow remains laminar. Furthermore, (A2)
restricts the discussion to moderately viscous liquids. While M � 1 would result in
a highly viscous second fluid which gets immobile as ε → 0, we will discuss the case
M � 1 of a extremly mobile fluid like air (compared to water or oil) separately
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in subsection 3.3. The asymptotic expansion stated in (A4) and (A5) is crucial for
the derivation, while (A3) serves as a simplification to avoid technical complexity.
The main reason for a straight wall at inlet and outlet (∂x1w

0(1) = ∂x1w
0(1) = 0)

together with (A6) is to avoid possible boundary layer effects. This can be relaxed if
the boundary conditions (2.20) and (2.21) at Γεin and Γεout are replaced appropriately.
Furthermore, rough walls of type wε(x1) = w0(x1) + εw1(x1/ε) +O(ε) would strongly
affect the shape and position of the interface. A naive extension of the following
results would yield unphysical oscillations of the interface, so that we restrict the
discussion to slowly varying walls.

Note that the normal and tangential vectors nεΓ, t
ε
Γ, nεw and tεw depend on γε and

wε, respectively, such that these can be expanded, e.g.

nεw = ( 0
1 )− ε

(
∂x1

w0

0

)
+O(ε2),(3.1)

nεΓ =



(
0

− sign(∂sγ
0
1)

)
+ ε 1
|∂sγ0

1 |

(
∂sγ

0
2

−∂sγ1
1

)
+O(ε2) for ∂sγ0

1 6= 0,

1√
(∂sγ1

1)2+(∂sγ0
2)2

(
∂sγ

0
2

−∂sγ1
1

)
+ ε 1√

(∂sγ1
1)2+(∂sγ0

2)2

(
∂sγ

1
2

−∂sγ2
1

)
+ε

∂sγ
1
1∂sγ

2
1+∂sγ

0
2∂sγ

1
2

((∂sγ1
1)2+(∂sγ0

2)2)3/2

(
−∂sγ0

2

∂sγ
1
1

)
+O(ε2) otherwise.

(3.2)

In particular, the direction of the normal vector nεΓ depends on ∂sγ0
1 . If ∂sγ0

1 6= 0 for
some s ∈ [0, 1], the interface Γε(t) is largely deformed over a region that has a width
O(ε0), namely I = [mins∈[0,1] γ

ε
1,maxs∈[0,1] γ

ε
1] with |I| = O(ε0). Therefore, there

are both fluids present along a transversal segment at any x1 ∈ I, and complicated
interface dynamics occur in the limit ε → 0. On the other hand, if ∂sγ0

1 ≡ 0, only
small deformations with |I| = O(ε) are possible, and we obtain asymptotically a sharp
transition from fluid I to fluid II at γ0

1 .

3.1. Flow in the bulk domains. First, we consider the flow in the bulk do-
mains Ωεm, m ∈ {I, II}, and solve the resulting equations away from the interface.
Inserting the homogenization ansatz into (2.15)–(2.22) using (A1)–(A6) and a Taylor
expansion around x2 = w0(x1) for (2.22), one obtains

O(ε) = ∂x1
p0
I − ∂2

x2
u0

I,1 in ΩεI(t),(3.3)

O(ε0) = ε−1∂x2
p0
I in ΩεI(t),(3.4)

O(ε) = ∂x1p
0
II −M∂2

x2
u0

II,1 in ΩεII(t),(3.5)

O(ε0) = ε−1∂x2
p0
II in ΩεII(t),(3.6)

O(ε) = ε−1∂x2u
0
m,2 +

(
∂x1u

0
m,1 + ∂x2u

1
m,2

)
in Ωεm(t),(3.7)

O(ε2) = u0
m,2 + εu1

m,2, O(ε) = ∂x2u
0
m,1 at x2 = 0,(3.8)

O(ε) = ∂x2
p0
m at x2 = 0,(3.9)

O(ε) = p0
I − p0

in, O(ε2) = u0
I,2 + εu1

I,2 or(3.10)

O(ε2) = u0
I − u0

in + ε
(
u1

I − u1
in
)

at x1 = 0,(3.11)

O(ε) = p0
II, O(ε2) = u0

II,2 + εu1
II,2 at x1 = 1,(3.12)

O(ε) = u0
m,1 + λ0∂x2u

0
m,1 at x2 = w0(x1),(3.13)

O(ε2) = u0
m,2 + ε

(
u1
m,2 + w1∂x2

u0
m,2 − u0

m,1∂x1
w0
)

at x2 = w0(x1).(3.14)
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Note that either (3.10) or (3.11) holds, depending on the choice of the boundary
condition at the inlet Γεin.

Since we are interested in the flow behaviour away from the interface Γε(t), we
define

GI(t) := min
s∈[0,1]

γ0
1(s, t), GII(t) := max

s∈[0,1]
γ0

1(s, t),

and investigate the problem for x1 < GI(t) in fluid I and for x1 > GII(t) in fluid II,
respectively. In leading order, one obtains ∂x2

u0
m,2 = 0 in Ωεm(t) for both m ∈ {I, II}

by the mass conservation (3.7). The symmetry and wall boundary conditions (3.8)
and (3.14) lead to

u0
m,2 = 0 for m = I, x1 < GI(t), and for m = II, x1 > GII(t),

which agrees with the in- and outflow boundary conditions (3.10)–(3.12). The second
component of the momentum balance of fluid I (3.4) yields in leading order ∂x2p

0
I = 0

in ΩεI(t), which is in agreement with the symmetry condition (3.9). We conclude

p0
I = p0

I (t, x1) for x1 < GI(t).

Analogously, the second component of the momentum balance of fluid II (3.6) leads
to ∂x2p

0
II = 0 in ΩεII(t) (in agreement with the symmetry condition (3.9)), and thus

p0
II = p0

II(t, x1) for x1 > GII(t).

From the first component of the momentum balance of fluid I (3.3) one obtains

∂x1
p0
I = ∂2

x2
u0

I,1 in ΩεI(t).

Integrating twice over x2 using the symmetry and wall boundary conditions (3.8) and
(3.13), this leads to

u0
I,1(t,x) =

x2
2 − w0(x1)(2λ0 + w0(x1))

2
∂x1

p0
I (t, x1) for x1 < GI(t).(3.15)

In a similar fashion, one obtains for fluid II by (3.5), (3.8), and (3.13)

u0
II,1(t,x) =

x2
2 − w0(x1)(2λ0 + w0(x1))

2M
∂x1p

0
II(t, x1) for x1 > GII(t).(3.16)

Integrating (3.15) and (3.16) over x2 ∈ [0, w0(x1)] for any x1 < GI and x1 > GII,
respectively, and using Remark 2.2 yields

q(t) =

∫ w0(a)

0

u0
I,1(t,x)|x1=adx2 = − (w0(x1))2(3λ0 + w0(x1))

3
∂x1

p0
I (t, x1),(3.17)

q(t) =

∫ w0(a)

0

u0
II,1(t,x)|x1=adx2 = − (w0(x1))2(3λ0 + w0(x1))

3M
∂x1

p0
II(t, x1),(3.18)

where q(t) :=
∫ 1

0
u0

I,1(t,x)dx2. Note that q is independent of x1, and it is equivalent
to the one in (A6) if (3.11) is given. Otherwise, q is unknown and must be found in
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the further solution process. Solving the above equations for p0
m, with the outflow

boundary condition (3.12) we obtain

p0
I (t,x) = p0

in(t)− q(t)
∫ x1

0

3

(w0(ξ))2(3λ0 + w0(ξ))
dξ for x1 < GI(t),(3.19)

p0
II(t,x) = q(t)

∫ 1

x1

3M
(w0(ξ))2(3λ0 + w0(ξ))

dξ for x1 > GII(t).(3.20)

Here, the inlet pressure p0
in(t) is either given by the inlet boundary condition (3.10),

or has to be found in the further solution process. Note that since the inlet boundary
condition is either (3.10) or (3.11), this means that either q or p0

in is given, while
the other still must be determined. Inserting (3.19) and (3.20) into (3.15) and (3.16)
yields

u0
I,1(t,x) = 3q(t)

w0(x1)(2λ0 + w0(x1))− x2
2

2(w0(x1))2(3λ0 + w0(x1))
for x1 < GI(t),(3.21)

u0
II,1(t,x) = 3q(t)

w0(x1)(2λ0 + w0(x1))− x2
2

2(w0(x1))2(3λ0 + w0(x1))
for x1 > GII(t).(3.22)

Using (3.21) and (3.22) in the mass conservation (3.7), the first order equations become

∂x2
u1
m,2 = q(t)

(
1

2(3λ0 + w0(x1))2
+

1

(w0(x1))2

− 9(2λ0 + w0(x1))x2
2

2(w0(x1))3(3λ0 + w0(x1))2

)
∂x1

w0(x1),

for m ∈ {I, II}. Integration over x2 using the symmetry condition (3.8) yields

u1
I,2(t,x) = q(t)

(
x2

2(3λ0 + w0(x1))2
+

x2

(w0(x1))2

− 3(2λ0 + w0(x1))x3
2

2(w0(x1))3(3λ0 + w0(x1))2

)
∂x1

w0(x1) for x1 < GI(t),

u1
II,2(t,x) = q(t)

(
x2

2(3λ0 + w0(x1))2
+

x2

(w0(x1))2

− 3(2λ0 + w0(x1))x3
2

2(w0(x1))3(3λ0 + w0(x1))2

)
∂x1

w0(x1) for x1 > GII(t),

which is in agreement with the boundary conditions (3.10)–(3.12) and (3.14).
Summarizing, we obtain the following solution in the bulk domains. There holds

uεI(t,x) = q(t)·
3
w0(x1)(2λ0+w0(x1))−x2

2

2(w0(x1))2(3λ0+w0(x1)) +O(ε)

ε
(

x2

2(3λ0+w0(x1))2 + x2

(w0(x1))2 − 3(2λ0+w0(x1))x3
2

2(w0(x1))3(3λ0+w0(x1))2

)
∂x1

w0(x1) +O(ε2)

,(3.23)

pεI(t,x) = p0
in(t)− q(t)

∫ x1

0

3
(w0(ξ))2(3λ0+w0(ξ))dξ +O(ε),(3.24)
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for x1 < GI(t), while for x1 > GII(t) one gets

uεII(t,x) = q(t)·
3
w0(x1)(2λ0+w0(x1))−x2

2

2(w0(x1))2(3λ0+w0(x1)) +O(ε)

ε
(

x2

2(3λ0+w0(x1))2 + x2

(w0(x1))2 − 3(2λ0+w0(x1))x3
2

2(w0(x1))3(3λ0+w0(x1))2

)
∂x1

w0(x1) +O(ε2)

,(3.25)

pεII(t,x) = q(t)

∫ 1

x1

3M
(w0(ξ))2(3λ0+w0(ξ))dξ +O(ε).(3.26)

This means that the solution in the bulk domains is of Hagen-Poiseuille type. Depend-
ing on the chosen inlet boundary condition (3.10) or (3.11), either the inlet pressure
p0
in or the total flux q is given. The other coefficient will be determined in the following

subsection via the coupling at the interface Γε(t). For upscaled models, we emphasize
that the total flux q is independent of the position x1 and that the pressures p0

m,
m ∈ {I, II}, depend linearly on q with a coefficient that only depends on the geometry
(w0), the viscosity ratio M and the slip length λ0.

3.2. Interface with small deformations. We continue the analysis for the
interface region around Γε(t). We first show that the bulk solutions are not compatible
with the interface conditions (2.23)–(2.26). However, introduction of a suitable scaling
allows to find the asymptotic solution in the boundary layer around the interface Γε(t),
which connects the bulk domain solutions. Additionally to (A1)–(A6), we make the
following assumptions.

(A7) The leading order interface position in x1 is constant, i.e., ∂sγ0
1 ≡ 0.

(A8) The capillary number is given by Ca = εαCa for some α ∈ N0. Here, Ca
denotes the effective capillary number and is independent of ε.

Note that (A7) means that the fluid-fluid interface Γε has only small deformations,
such that GI(t) = γ0

1(t) = GII(t). Furthermore, (A8) is used to distinguish whether
interfacial tension is relevant or even dominating the interface movement, see also Re-
mark 3.1. In case of a largely deformed interface (∂sγ0

1 6= 0), the solution could violate
the boundary and symmetry conditions (2.25) and (2.26). A more detailed analysis
with further boundary layers would be necessary, but lies out of the scope of this
paper.

Inserting the homogenization ansatz into the kinematic interface condition (2.23)
gives

(∂tγ
0
1 − u0

I,1)∂sγ
0
2 + u0

I,2∂sγ
1
1 = O(ε).

Since γ0
1 is constant in the parameter s, a non-singular parameterization requires

∂sγ
0
2 > 0. Inserting the bulk solution (3.23), where u0

I,2 = 0, yields in leading order

∂tγ
0
1 = 3q

w0(γ0
1)(2λ0 + w0(γ0

1))− (γ0
2)2

2(w0(γ0
1))2(3λ0 + w0(γ0

1))
,

which contradicts the assumption that γ0
1 does not depend on s, except for the trivial

case q(t) = 0. Therefore, we expect the existence of a boundary layer around the
interface Γε(t).

To resolve the boundary layer, we apply the inner scaling

X1(t, x1) := (x1 − γ0
1(t))/ε, X2 := x2
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and use the rescaled variables and domains

Y ε :=
(

(γε1−γ0
1)/ε

γε2

)
, U ε

m(t,X) := uεm(t,x), P εm(t,X) := pεm(t,x),

ΩεX(t) := {X ∈ R2 | 0 < X2 < wε(γ0
1(t) + εX1)}, ΓεX(t) := {Y ε(t, s) | s ∈ [0, 1]},

ΩεX,I(t) := {X(t,x) | x ∈ ΩεI}, ΩεX,II(t) := {X(t,x) | x ∈ ΩεII},
ΓεX,w,m(t) := {X ∈ ∂ΩεX,m(t) |X2 = wε(γ0

1(t) + εX1)}.

The matching conditions between inner expansion in terms of X and outer expansion
in terms of x require the equivalence in the limit, i.e., for any quantity aεm(t,x) with in-
ner expansionAεm(t,X) there must hold limx1→γ0

1
aεm(t,x) = limX1→(−1)m∞Aεm(t,X)|X2=x2

.
With the rescaled coordinates, (2.15)–(2.19) and (2.22)–(2.26) become

ε2Re
(
ε∂tU

ε
I − ∂X1

U ε
I∂tγ

0
1 + (U ε

I · ∇X
)U ε

I
)

+∇
X
P εI = ε∆

X
U ε

I in ΩεX,I(t),

(3.27)

ε2RRe
(
ε∂tU

ε
II − ∂X1U

ε
II∂tγ

0
1 + (U ε

II · ∇X
)U ε

II
)

+∇
X
P εII = Mε∆

X
U ε

II in ΩεX,II(t),

(3.28)

∇
X
·U ε

m = 0 in ΩεX,m(t),(3.29)
U ε
m · nsym = 0, tsym · ∇X

U ε
mnsym = 0 at X2 = 0,(3.30)

∇
X
P εm · nsym = 0, at X2 = 0,(3.31)

T εw ·
(
U ε
m + 2λεD

X
(U ε

m)N ε
w
)

= 0, U ε
m ·N

ε
w = 0 on ΓεX,w,m(t),(3.32)

∂tγ
0
1N

ε
Γ,1 + ε∂tY

ε ·N ε
Γ = U ε

I ·N
ε
Γ, U ε

I = U ε
II on ΓεX(t),(3.33)

−(P εI − P εII)N
ε
Γ + 2ε

(
D

X
(U ε

I)−MD
X

(U ε
II)
)
N ε

Γ = ε2

CaK
εN ε

Γ on ΓεX(t),(3.34)
N ε

Γ · nsym = 0 at s = 0,(3.35)

cos(θε(−∂t(γ0
1T

ε
w,1 + εY ε · T εw)|X1=Y ε1

)) = T εΓ · T
ε
w
∣∣
X1=Y ε1

at s = 1.(3.36)

The transformed normal and tangential vectors are given by

T εw = tεw
∣∣
x1=γ0

1+εX1
, N ε

w = nεw
∣∣
x1=γ0

1+εX1
,

T εΓ = 1√
(∂sY ε1 )2+(∂sY ε2 )2

∂sY
ε, N ε

Γ = 1√
(∂sY ε1 )2+(∂sY ε2 )2

(
∂sY

ε
2

−∂sY ε1

)
,

and the rescaled curvature Kε is

Kε=
∂sY

ε
1∂

2
sY

ε
2−∂sY ε2∂2

sY
ε
1

ε((∂sY ε1 )2+(∂sY ε2 )2)
3/2 .

Inserting the homogenization ansatz into (3.27)–(3.36) using (A1)–(A5), (A7),



AVERAGED MODEL FOR TWO-PHASE FLOW WITH CONTACT ANGLE 15

(A8) and a Taylor expansion around X2 = w0(γ0
1(t)) for (3.32), one obtains

O(ε2) = ∇
X
P 0

I + ε
(
∇

X
P 1

I −∆
X
U0

I
)

in ΩεX,I(t),(3.37)

O(ε2) = ∇
X
P 0

II + ε
(
∇

X
P 1

II −M∆
X
U0

II
)

in ΩεX,II(t),(3.38)

O(ε) = ∇
X
·U0

m in ΩεX,m(t),(3.39)

O(ε) = U0
m,2, O(ε) = ∂X2

U0
m,1 at X2 = 0,(3.40)

O(ε2) = ∂X2P
0
m + ε∂X2P

1
m at X2 = 0,(3.41)

O(ε) = U0
m,1 +

(
λ0 + λe exp(−|X1|)

)
(3.42)

·
(
∂X2

U0
m,1 + ∂X1

U0
m,2

)
at X2 = w0(γ0

1(t)),

O(ε) = U0
m,2 at X2 = w0(γ0

1(t)),(3.43)

O(ε) =
(
∂tγ

0
1 − U0

I,1
)
∂sY

0
2 + U0

I,2∂sY
0
1 on ΓεX(t),(3.44)

O(ε) = U0
I −U

0
II on ΓεX(t),(3.45)

O(εmin(1,2−α)) = (P 0
I − P 0

II ) + ε1−α

Ca
∂sY

0
1 ∂

2
sY

0
2 −∂sY 0

2 ∂
2
sY

0
1

((∂sY 0
1 )2+(∂sY 0

2 )2)
3/2 on ΓεX(t),

(3.46)

O(ε) = ∂sY
0 ·
(
D

X
(U0

I )−MD
X

(U0
II)
)( ∂sY

0
2

−∂sY 0
1

)
on ΓεX(t),(3.47)

O(ε) = ∂sY
0
1 at s = 0,(3.48)

O(ε) =
∂sY

0
1√

(∂sY 0
1 )2+(∂sY 0

2 )2
+ cos(θ0(∂tγ

0
1)) at s = 1.(3.49)

The leading order terms in the momentum equations (3.37) and (3.38) yield
∇

X
P 0
m = 0 in ΩεX,m(t) for m ∈ {I, II}. This is in agreement with the symmetry

condition (3.41). By matching with the outer solution we obtain

P 0
m(t,X) = p0

m(t, γ0
1(t)) for all X ∈ ΩεX,m(t).(3.50)

Remark 3.1. Recall that we assume Ca = εαCa for some α ∈ N0. Considering
(3.46), one must distinguish the cases α < 1, α = 1 and α > 1. For α < 1, the
interface tension force is negligible in leading order, such that the pressures P 0

I and
P 0

II are equal. Formally, this allows to determine the leading order solution of the outer
bulk-flow problem. However, this also means that the interface ΓεX(t) is not stabilized
by surface tension, but part of the first order solution, such that we cannot guarantee
solvability. Furthermore, one might expect the occurrence of topological changes due
to e.g. formation of bubbles, thin films, etc. which are not part of this model. In
the case α > 1, the interfacial tension force is dominating (3.46), so that the leading
order curvature K0 of the interface is zero. Due to the boundary conditions (3.48)
and (3.49), this can only happen if the leading order contact angle θ0(∂tγ

0
1) is π/2 for

any γ0
1(t), i.e., for a constant contact angle model for perfectly mixed-wet materials.

Even worse, due to (3.50), the leading order solution of the outer bulk-flow problem
then depends on the first order solution, such that we cannot assure the solvability in
this case either. We therefore consider in what follows only the case α = 1. Then the
pressure difference is balanced by the surface tension force in (3.46). This leads to a
solution for the outer bulk-flow problem as well as for the interface shape.

In the regime α = 1, plugging the constant pressures (3.50) into the interfacial
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force balance (3.46) yields a constant leading-order curvature K0 given by

K0 =
∂sY

0
2 ∂

2
sY

0
1 − ∂sY 0

1 ∂
2
sY

0
2

((∂sY 0
1 )2 + (∂sY 0

2 )2)
3/2

= Ca(p0
II − p0

I )|x1=γ0
1
.(3.51)

Therefore, the interface is a circular arc. By the contact-angle condition (3.49), one
obtains

K0 = −cos(θ0(∂tγ
0
1))

w0(γ0
1)

.(3.52)

Combining (3.51) and (3.52) and plugging in the bulk pressure solutions (3.24) and
(3.26) leads to

p0
in − q

(∫ γ0
1

0

3
(w0(x1))2(3λ0+w0(x1))dx1 +

∫ 1

γ0
1

3M
(w0(x1))2(3λ0+w0(x1))dx1

)
(3.53)

=
cos(θ0(∂tγ

0
1))

Caw0(γ0
1)

.

Due to the constant curvature (3.52) and the symmetry condition (3.48), the lead-
ing order interface Γ0

X(t) := {Y 0(t, s) | s ∈ [0, 1]} is given (up to a reparametrization)
by

Y 0(t, s) =


w0(γ0

1)

cos(θ0(∂tγ0
1))

(
cos((π2−θ0(∂tγ

0
1))s)−sin(θ0(∂tγ

0
1))

sin((π2−θ0(∂tγ
0
1))s)

)
for θ0 6= π/2,

w0(γ0
1(t))( 0

s ) for θ0 = π/2.

Analogously to Remark 2.2, by the mass conservation (2.17), the interface velocity
(3.33) and the outer velocity solution (3.23), we obtain

0 =

∫
ΩεI

∇ε·uεIdx =

∫
Γε
uεI · nεΓdl −

∫ 1

0

uεI,1
∣∣
x1=0

dx1

=

∫
Γε
∂tγ

0
1N

ε
Γ,1 + ε∂tY

ε ·N ε
Γdl − q +O(ε) =

∫ 1

0

∂tγ
0
1∂sY

ε
2ds− q +O(ε)

= ∂tγ
0
1w

0(γ0
1)− q +O(ε).

Therefore, the leading order position γ0
1 of the interface fulfils

∂tγ
0
1(t) =

q(t)

w0(γ0
1(t))

.(3.54)

To find the solution for u0
m, p0

m (m ∈ {I, II}), which is given by (3.23)–(3.26), one
has to determine γ0

1 , q and p0
in. The derivation depends on the chosen inlet boundary

condition. For a given inlet velocity uεI = uεin at Γεin, the value of q is known. Plugging
q into (3.54) and solving for γ0

1 yields

γ0
1(t) =W−1

(
W(γ0

1 |t=0) +

∫ t

0

q(τ)dτ

)
,

where W(ξ) :=
∫ ξ

0
w0(x1)dx1. Note that W ′ = w0 > 0 by (A4), such that the inverse

function W−1 is well-defined. Finally, p0
in can be found by (3.53).
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For a given inlet pressure pεI = pεin at Γεin, the value of p0
in is known. Then, the

differential algebraic system (3.53) and (3.54) has index 1 and can be solved for q and
γ0

1 . A sufficient condition for solvability is

sin
(
θ0
(

q
w0(γ0

1)

))
(θ0)′

(
q

w0(γ0
1)

)
6= Ca(w0(γ0

1))2

(∫ γ0
1

0

3
(w0(x1))2(3λ0+w0(x1))dx1 +

∫ 1

γ0
1

3M
(w0(x1))2(3λ0+w0(x1))dx1

)
,

where (θ0)′ denotes the derivative of θ0. Note that the righthand side is always posi-
tive, so that any contact angle model which fulfils (θ0)′ ≤ 0 yields solvable differential
algebraic equations.

Furthermore, from (3.37)–(3.45) and (3.47), the velocity close to the interface is
given by two coupled Stokes problems. More precisely, these problems are defined in
the domains

Ω0
X,I(t) = {X ∈ R× (0, w0(γ0

1(t))) | ∃s ∈ [0, 1] : X1 < Y 0
1 (t, s) ∧X2 = Y 0

2 (t, s)},
Ω0

X,II(t) = {X ∈ R× (0, w0(γ0
1(t))) | ∃s ∈ [0, 1] : X1 > Y 0

1 (t, s) ∧X2 = Y 0
2 (t, s)}.

With this, the two problems are (m ∈ {I, II})

0 = ∇
X
P 1

I −∆
X
U0

I in Ω0
X,I(t),(3.55)

0 = ∇
X
P 1

II −M∆
X
U0

II in Ω0
X,II(t),(3.56)

0 = ∇
X
·U0

m in Ω0
X,m(t),(3.57)

0 = U0
m,2, 0 = ∂X2

U0
m,1, 0 = ∂X2

P 1
m at X2 = 0,(3.58)

0 = U0
m,1 +

(
λ0 + λe exp(−|X1|)

)
∂X2U

0
m,1, 0 = U0

m,2 at X2 = w0(γ0
1(t)),(3.59)

0 =
(
∂tγ

0
1 − U0

I,1
)
∂sY

0
2 + U0

I,2∂sY
0
1 on Γ0

X(t),(3.60)

0 = U0
I −U

0
II on Γ0

X(t),(3.61)

0 = ∂sY
0 ·
(
D

X
(U0

I )−MD
X

(U0
II)
)( ∂sY

0
2

−∂sY 0
1

)
on Γ0

X(t),(3.62)

0 = lim
X1→−∞

U0
I − u0

I |x1=γ0
1 ,x2=X2

,(3.63)

0 = lim
X1→∞

U0
II − u0

II|x1=γ0
1 ,x2=X2

.(3.64)

3.3. Unsaturated flow limit. In (A2) we assumed the viscosity ratio M =
O(ε0). Here, we investigate the case when the viscosity of fluid II is much smaller
than that of fluid I, like in a system consisting of water and air. Hence, we replace
(A2) by:

(A9) The viscosity ratio satisfies M = O(εβ) for some β ≥ 1.
Following the same steps as in the previous subsections, we obtain a model which
only includes the flow of fluid I, while the flow of fluid II can be omitted. In other
words, the upscaled model is an unsaturated flow in the thin strip. Furthermore, the
effective solution for fluid I will coincide with the one obtained when letting M → 0
in (3.23), (3.24), (3.53), and (3.54) derived previously.

To this end, we use the same asymptotic expansions and (A1), (A3)–(A8) and
(A9) instead of (A2). For fluid I, we obtain again (3.3), (3.4), (3.7)–(3.9), (3.13), and
(3.14) and work with either (3.10) or (3.11) as inlet condition. Therefore, the solution
for fluid I is again (3.23) and (3.24), where p0

in and q are given by the interface region
and the inlet condition.
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For fluid II, the leading order mass balance equations become

O(ε) = ∂x1
p0
II in ΩεII(t),(3.65)

O(ε0) = ε−1∂x2
p0
II in ΩεII(t).(3.66)

Together with the leading order outflow condition O(ε) = p0
II at x1 = 1, we conclude

that p0
II(t,x) = 0 in ΩεII(t). Rescaling the interface region as in subsection 3.2 and

taking (A7) and (A8) into account, the leading order equations for fluid I are again
(3.37) and (3.39)–(3.43). Since p0

II ≡ 0, the interface conditions are (3.42)–(3.44) and
(3.48), as well as

O(εmin(1,2−α)) = P 0
I + ε1−α

Ca
∂sY

0
1 ∂

2
sY

0
2 −∂sY 0

2 ∂
2
sY

0
1

((∂sY 0
1 )2+(∂sY 0

2 )2)
3/2 on ΓεX(t),(3.67)

O(ε) = ∂sY
0 ·D

X
(U0

I )
(

∂sY
0
2

−∂sY 0
1

)
on ΓεX(t).(3.68)

In the regime α = 1, this yields a constant leading-order curvature, implying

p0
in − q

∫ γ0
1

0

3
(w0(x1))2(3λ0+w0(x1))dx1 =

cos(θ0(∂tγ
0
1))

Caw0(γ0
1)

,(3.69)

∂tγ
0
1(t) =

q(t)

w0(γ0
1(t))

.(3.70)

3.4. Hysteretic contact angle model. The previous analysis requires that
the dynamic contact angle relation is continuous, as expressed in (A5). However,
experiments suggest the occurrence of contact angle hysteresis, see e.g. the reviews [10,
56] discussing this as a result of surface wettability and roughness. This means that
static contact angles are not unique, but can vary due to pinning. Here, we allow
that the contact angle relation θε involves a multi-valued graph if the velocity of the
contact line is zero. To still obtain a well-defined contact angle law, we reformulate
the respective condition under the following assumption, which replaces (A5).
(A10) Restricted to R \ {0}, θε is a Lipschitz-continuous and strictly monotonic

function into (0, π). For a zero velocity, it can take any values as follows.

θε(0) ∈

{
[limu↗0 θ

ε(u), limu↘0 θ
ε(u)] if θε is increasing,

[limu↘0 θ
ε(u), limu↗0 θ

ε(u)] otherwise.

Using the monotonicity of θε, one can invert the relation with respect to the velocity.
For this, let ζε := (cos(θε))−1 be the inverse of cos θε. By (A10), ζε is well-defined and
Lipschitz-continuous. As before, we assume that ζε depends regularly on ε.
(A11) ζε has a uniform expansion

ζε(a) = ζ0(a) + εζ1(a) +O(ε2),

where ζ0 : (−1, 1)→ R is Lipschitz-continuous.
With this, we study the Navier–Stokes system for two-phase flow (2.15)–(2.25),

but replace (2.26) by the following, inverted contact angle condition

ζε
(
tεΓ
∣∣
s=1
· tεw
∣∣
x1=γε1

)
= ∂tγ

ε
1.(3.71)

Since the analysis in subsection 3.1 is independent of the interface region, and in
particular does not use (A5) or the non-hysteretic contact angle relation (2.26), the
derived bulk solutions (3.23)–(3.26) remain unchanged.
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Using (A1)–(A4), (A6)–(A8) and (A11) instead of (A5), we repeat the analysis
close to the interface Γε(t) from subsection 3.2. Following the same steps, we obtain
a circular interface with constant curvature K0, which is then implicitly given by

∂tγ
0
1 = ζ0

(
w0(γ0

1)K0
)
.

Combining this, the pressure balance (3.51), and the outer pressure solution (3.24)
and (3.26), one obtains

∂tγ
0
1 = ζ0

(
w0(γ0

1)Ca(p0
in − qJ(γ0

1))
)
,(3.72)

where

J(γ0
1) :=

∫ γ0
1

0

3
(w0(x1))2(3λ0+w0(x1))dx1 +

∫ 1

γ0
1

3M
(w0(x1))2(3λ0+w0(x1))dx1.

Together with (3.54), this forms a differential algebraic system of two equations for
the two unknowns γ0

1 and either p0
in or q. Furthermore, the Stokes problem for finding

the velocity close to the interface remains unchanged as well.
The solution process depends again on the chosen inlet boundary condition, anal-

ogously to the discussion in subsection 3.2. As before, it is sufficient to obtain γ0
1 ,

p0
in and q, since these are the unknown coefficients for the bulk solutions u0

m and p0
m

(m ∈ {I, II}) given by (3.23)–(3.26). For an inlet velocity boundary condition uεI = uεin
(at Γεin), the value of q is given. Hence, plugging this into (3.54) yields γ0

1 , and thus
one can solve (3.72) for p0

in. However, the solution of the inlet pressure p0
in is not

unique if the contact angle relation θε is multi-valued at velocity u = 0. On the other
hand, for an inlet pressure condition pεI = pεin, the value of p0

in is known. Then, the
differential algebraic system (3.54) and (3.72) has index 1 and can be solved for q and
γ0

1 . A sufficient condition for the unique solvability is

(ζ0)′
(
w0(γ0

1)Ca(p0
in − qJ(γ0

1))
)
6= 1

Ca(w0(γ0
1))2J(γ0

1)
.

4. Averaged Models and Effective Quantities. Based on the asymptotic so-
lution for pressures and velocities, we continue with the study of averaged models and
effective quantities. First, we show that a local, one-dimensional version of Darcy’s
law holds for the transversally averaged pressures and velocities. In the second part
we derive effective quantities based on volume averages. The main result is a capillary
pressure - saturation relationship involving dynamic effects.

In the following, we are only interested in the leading order relations. To simplify
the notation, we therefore drop the indices (·)ε and (·)0, and neglect higher-order
terms. Hence, all following equations should be understood as up to terms of order ε.

4.1. Transversal average: Darcy’s law. In the following, we derive the trans-
versal average of the quantities to demonstrate that the one-dimensional description
of the thin strip yields a local version of Darcy’s law. To this end, recall that the
total flux (in the half strip) q(t) is independent of x1 as discussed in Remark 2.2. The
transversally averaged velocity in x1-direction is therefore given by

u(t, x1) :=

{
(w(x1))−1

∫ w(x1)

0
u1,I(t,x)dx2 for x1 < γ1(t),

(w(x1))−1
∫ w(x1)

0
u1,II(t,x)dx2 for x1 > γ1(t).

=
q(t)

w(x1)
.
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1 2

1

2

w

KI
λ = 0

λ = 0.25

λ = 0.5

Figure 4.1. The local permeability KI has a quadratic dependence on the width w and increases
for increasing slip length λ.

Since the pressures pI and pII are independent of x2, we obtain for the transversally
averaged pressures

pI(t, x1) := (w(x1))−1

∫ w(x1)

0

pI(t,x)dx2

= pin(t)− q(t)
∫ x1

0

3

(w(ξ))2(3λ+ w(ξ))
dξ for x1 < γ1(t),

pII(t, x1) := (w(x1))−1

∫ w(x1)

0

pII(t,x)dx2

= q(t)

∫ 1

x1

3M
(w(ξ))2(3λ+ w(ξ))

dξ for x1 > γ1(t).

This means that the transversally averaged pressures satisfy a Darcy-type law

u(t, x1) = −Km(x1)∂x1
pm(t, x1)

for m ∈ {I, II}, where the local permeabilities are given by

KI(x1) := 1
3w(x1)(3λ+ w(x1)),

KII(x1) := 1
3Mw(x1)(3λ+ w(x1)).

These permeabilities depend only on the local width w of the thin strip, on the slip
length λ and on the viscosity ratio M of the fluids, see also Figure 4.1. Note that
this resembles the typical relation u = d2

12∂x1
p for single-phase flow in a thin strip of

diameter d = 2w.

4.2. Effective quantities: Dynamic capillary pressure. To obtain effective
quantities like the saturation and the intrinsically averaged pressures, we use volume
averages. With these, we obtain a capillary pressure - saturation relationship involving
dynamic effects. In line with classical volume averaging theory [73, 55], we define the
volume average 〈am〉 of a quantity am defined in Ωm, m ∈ {I, II}, to be

〈am〉 :=

∫
Ωm

amdx∫
Ω
dx

,

while the intrinsic average is

〈am〉m :=

∫
Ωm

amdx∫
Ωm

dx
.
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The volume of the domain ΩI is given by∫
ΩI

dx =

∫ γ1

0

w(x1)dx1 =W(γ1).

Analogously, we have
∫

Ω
dx = W(1) and

∫
ΩII
dx = W(1) − W(γ1). Therefore, the

saturation of fluid I is in leading order given by

S(t) := 〈1ΩI(t)〉 =

∫
ΩI(t)

dx∫
Ω
dx

=
W(γ1(t))

W(1)
.(4.1)

Note that we only consider the case when both phases are present, so that γ1(t) ∈ (0, 1)
and S ∈ (0, 1). For simplicity, we define the function

Ψ(S) :=
1

w(W−1(W(1)S))
,(4.2)

which represents the reciprocal of the local width depending on the saturation S and
on the geometry of the thin strip. Note that the system (3.53) and (3.54) can be
rewritten in terms of the saturation as

pin − qW(1)

(∫ S

0

3(Ψ(ξ))3

3λ+ (Ψ(ξ))−1
dξ +

∫ 1

S

3M(Ψ(ξ))3

3λ+ (Ψ(ξ))−1
dξ

)

=
cos(θ(W(1)Ψ(S)∂tS))

Ca
Ψ(S),

∂tS =
q

W(1)
.

However, this reformulation is less practical, since the function Ψ typically is not a
closed-form expression.

Using (3.24), the intrinsically averaged pressure of fluid I is

〈pI〉I =
1

W(γ1)

∫ γ1

0

w(x1)

(
pin − q

∫ x1

0

3

(w(ξ))2(3λ+ w(ξ))
dξ

)
dx1,

which can be rewritten after integration by parts as

〈pI〉I = pI
∣∣
x1=γ1

+
3q

W(γ1)

∫ γ1

0

W(x1)

(w(x1))2(3λ+ w(x1))
dx1.(4.3)

Analogously, (3.26) yields the intrinsically averaged pressure of fluid II to be

〈pII〉II = pII
∣∣
x1=γ1

− 3Mq
W(1)−W(γ1)

∫ 1

γ1

W(1)−W(x1)

(w(x1))2(3λ+ w(x1))
dx1.(4.4)

Using the interface condition (3.53), the difference of the intrinsically averaged pres-
sures, in the following called phase-pressure difference, is given by

〈pI〉I − 〈pII〉II =
cos(θ(∂tγ1))

Caw(γ1)
+ 3q

(
1

W(γ1)

∫ γ1

0

W(x1)

(w(x1))2(3λ+ w(x1))
dx1(4.5)

+
M

W(1)−W(γ1)

∫ 1

γ1

W(1)−W(x1)

(w(x1))2(3λ+ w(x1))
dx1

)
.
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Using (4.1) and (4.2) and the interface condition (3.54), this difference can be ex-
pressed in the form

〈pI〉I − 〈pII〉II = pc,loc(S, ∂tS) + τ(S)∂tS.(4.6)

The first term on the right denotes the local capillary pressure pc,loc := (pI−pII)|x1=γ1

given by

pc,loc(S, ∂tS) =
cos(θ(W(1)Ψ(S)∂tS))

Ca
Ψ(S).(4.7)

The second term in (4.6) can be interpreted as a dynamic capillarity due to the viscous
drag. In particular, its coefficient is

τ(S) =
3W(1)

S

∫ S

0

ξ(Ψ(ξ))3

3λ+ (Ψ(ξ))−1
dξ +

3W(1)M
1− S

∫ 1

S

(1− ξ)(Ψ(ξ))3

3λ+ (Ψ(ξ))−1
dξ,(4.8)

which depends on the slip length λ, the viscosity ratio M and the wall function w.
Note that under static conditions, when q � 1, we have pin ≈ 〈pI〉I − 〈pII〉 = pc,loc,
such that the measurement of the inlet pressure yields (static) capillary pressure–
saturation relation, but under the dynamic conditions studied here, these quantities
can considerably differ. This one must be aware of when performing experiments.

The local capillary pressure pc,loc depends reciprocally on the effective capillary
number Ca and on the local width w(W−1(W(1)S)) = 1/Ψ(S) of the thin strip. In
case of a dynamic contact angle model of the form cos(θ(u)) = cos(θs) + ηCau, the
molecular kinetic theory in [9, 10], (4.7) yields

pMKT
c,loc (S, ∂tS) =

cos(θs)

Ca
Ψ(S) + ηW(1)(Ψ(S))2∂tS.(4.9)

The static and dynamic effects are decoupled in this case. The first term models the
static (local) capillary pressure, while the second term is a dynamic contribution.

In case of a constant contact angle θ ≡ θs ∈ (0, π), (4.7) yields the local capillary
pressure

pconst
c,loc (S) =

cos(θs)

Ca
Ψ(S).

With l(t) :=
∫

ΓX(t)
ds being the length of the circular interface ΓX(t) at time t, the

local capillary pressure becomes

pconst
c,loc (l) =

π
2 − θs
Ca l

.

Observe that l(t) can be assimilated to the interfacial area concept considered in [29,
30]. Note that for a dynamic contact angle, there is no simple closed-form expression of
the local capillary pressure as a function of the interface length (nor of its derivatives).

5. Numerical Experiments. To illustrate the theoretical findings, we depict
some numerical examples in this section. We start with a thin strip of constant width,
and afterwards consider a constricted “pore throat” with varying width. After a short
discussion of the boundary conditions, we consider the resulting effective quantities.
In particular, we study the effect of the slip length and the viscosity ratio and discuss
the effect of a dynamic and a hysteretic contact angle model for both geometries.

We have implemented the numerical solutions using MATLAB® R2020a [66]. The
source code is available under the CC-BY license at https://github.com/s-lunowa/
AsymptoticThinStripMCLSolver.
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Parameter Value

Capillary number Ca 1/2
Contact angle θ π/3
Slip length λ 1/6
Viscosity ratio M 1
Initial interface position γ1|t=0 0
Inlet pressure pin 3

Table 5.1
Standard parameters for the thin strip of constant width.

Figure 5.1. Velocity profile in the thin strip with constant width (λ = 1/6).

5.1. Thin strip of constant width. First we consider a simple case, which is a
thin strip of constant width wε≡ 1, and study the velocity and pressure distribution
of the two phases as well as the movement of the interface. After a short discussion of
the effect of different inlet boundary conditions, we will consider the effect of different
parameter choices in the following subsections — the slip length in subsection 5.1.1,
the viscosity ratio in subsection 5.1.2, and dynamic and hysteretic contact angle mod-
els in subsections 5.1.3 and 5.1.4, respectively. Except for the varying parameter
mentioned in each subsection, all the other ones are fixed, as given in Table 5.1. In
particular, the contact angle model considered when discussing the other parameters
is constant, i.e., the contact angle is static and fluid I is non-wetting.

For this geometry, the solution given in (3.23)–(3.26) for the bulk domains be-
comes

uI(t,x) =

(
3q(t)

2λ+1−x2
2

6λ+2

0

)
, pI(t,x) = pin(t)− q(t) 3x1

3λ+ 1
, for x1 < γ1(t),(5.1)

uII(t,x) =

(
3q(t)

2λ+1−x2
2

6λ+2

0

)
, pII(t,x) = q(t)

3M(1− x1)

3λ+ 1
, for x1 > γ1(t).(5.2)

This means that the velocity profiles are of Hagen-Poiseuille type, see also Figure 5.1.
The pressures decrease linearly inside the bulk phases due to the viscous forces. Fur-
thermore, the interface system (3.53) and (3.54) simplifies into

pin(t)− q(t)3γ1(t) + 3M(1− γ1(t))

3λ+ 1
=

cos(θ(q(t)))

Ca
, ∂tγ1(t) = q(t).(5.3)

The actual size of the quantities and the movement of the interface depends on
the inlet boundary conditions, on the effective capillary number, on the slip length,
on the viscosity ratio and on the contact angle model. Here, we shortly discuss the
qualitatively different cases with respect to the inlet boundary conditions and the
viscosity ratio, when all other parameters are given by Table 5.1 for simplicity.
(a) When the inlet velocity is fixed, e.g. uin,1 = 4/3 − x2

2, one obtains q(t) = 1 and
thus the constant (in time) velocities um,1 = 4/3− x2

2 for m ∈ {I, II}, so that the
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Figure 5.2. Pressure distribution over length x1 at various times in the thin strip of constant
width for viscosity ratio M = 0.5. The solution depends on the inlet boundary condition and shows
a more dynamic behaviour in case (b) than in case (a).

interface moves linearly, γ1(t) = t. The pressures are then given by

pI(t,x) = 1 + 2M + 2(1−M)t− 2x1, pII(t,x) = 2M(1− x1).

For M 6= 1, the pressure of fluid I is time-dependent, see also Figure 5.2, while
both pressures are constant in time for M = 1.

(b) When the inlet pressure is fixed, e.g. pin = 3, the flow of both fluids is time-
dependent. For a viscosity ratio M < 1, one obtains the solution

pI(t,x) = 3− 2(1−M)x1√
M2+2(1−M)t

, pII(t,x) = 2M(1−M)(1−x1)√
M2+2(1−M)t

,

um,1(t,x) =
(1−M)( 4

3−x2
2)√

M2+2(1−M)t
, γ1(t) =

√
M2+2(1−M)t−M

1−M ,

form ∈ {I, II}, see Figure 5.2. Analogous behaviour can be observed when M > 1.
Only for M = 1, both pressures are constant in time, like in (a).

From these examples, we observe a more dynamic behaviour when the inlet pressure is
given, which corresponds also to the typical setting for capillary pressure experiments.
Thus, we restrict the following discussion to the case of given pressure boundary
condition at the inlet.

Due to the constant width, the effective quantities have rather simple algebraic
expressions. The saturation S coincides with the interface position, i.e., S = γ1. The
local permeabilities are constant and given by

KI ≡
1 + 3λ

3
, KII ≡

1 + 3λ

3M
.(5.4)

The local capillary pressure, the dynamic coefficient and the phase-pressure difference
are

pc,loc(S, ∂tS) =
cos θ(∂tS)

Ca
(5.5)

τ(S) = 3
S + M(1− S)

6λ+ 2
,(5.6)

〈pI〉I − 〈pII〉II =
pin + pc,loc(S, ∂tS)

2
.(5.7)
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faster for an increasing slip length λ (right).

As direct consequence of the constant contact angle in Table 5.1, we obtain a
constant local capillary pressure pc,loc ≡ 1 by (5.5) and a constant phase-pressure
difference 〈pI〉I−〈pII〉II ≡ 2 by (5.7). Changing the static contact angle θ ≡ θs ∈ (0, π)
or the capillary number Ca influences the size of the local capillary pressure and the
size of the phase-pressure difference in a straightforward way, while the behaviour
of the other quantities remains qualitatively the same. For simplicity, we do not
discuss their detailed effects. Note that pc,loc and 〈pI〉I − 〈pII〉II do not depend on
the slip length nor on the viscosity ratio. Hence, we only consider their behaviour
for dynamic and hysteretic contact angle models. Meanwhile, the dynamic coefficient
depends on the slip length and the viscosity ratio, which is relevant in case of a inlet
velocity condition.

5.1.1. Effect of the slip length. First, we consider the effect of the slip length
λ while using all other parameters as above. The velocity at the wall is given by

um,1
∣∣
x2=1

= q 3λ
3λ+1 for m ∈ {I, II}.

It is zero for λ = 0, increases for an increasing slip length, and approaches q for
λ → ∞, which corresponds to a total slip, see Figure 5.3. This is a result of the
decreased friction of the fluid at the wall for an increased slip length. Additionally,
this leads to a smaller dynamic coefficient τ , cf. (5.6) and Figure 5.3. For constant
inlet pressure, the decrease of the pressure gradients in (5.1) and (5.2) for an increased
slip length λ are compensated by a larger total flux q, and thus a faster movement of
the interface position γ1, see also Figure 5.3. The local permeabilities KI, KII show
a similar behaviour. Observe that since w ≡ 1, these only depend on the slip length.
As follows from (5.4) (see also Figure 4.1), they increase linearly with λ.

5.1.2. Effect of the viscosity ratio. Next, we continue the investigation for
various viscosity ratios M. Since the viscous force in fluid II is proportional to the
viscosity ratio M, the total flux q decreases when the viscosity ratio M increases,
cf. (5.3). In particular, the interface position γ1 moves faster when the thin strip is
mainly filled by the less viscous fluid. Furthermore, we observe that the solutions
converge for M → 0 towards solution of the simplified, unsaturated flow model as
discussed in subsection 3.3, see Figure 5.4. Note that we use γ1|t=0 = 10−3 when
M = 0 to avoid the degeneration of the interface system (5.3).

The dynamic coefficient τ becomes larger for small saturations S, if the viscosity
ratio is large (M > 1), and vice versa for M < 1, see (5.6) and Figure 5.4. Note that
one can observe even in this extremely simplified setting that the dynamic coefficient is
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0.5 1

1

2

η

p

〈pI〉I − 〈pII〉II
pc,loc

0.5 1 1.5

0.5

1

t

γ1
η = 0

η = 0.25

η = 0.5

η = 0.75

η = 1

Figure 5.5. The local capillary pressure pc,loc increases for increasing dynamic contact angle
coefficient η (left). Hence, the movement of the interface position γ1 slows down (right).

saturation dependent, except for fluids with the same viscosity (M = 1). Additionally,
the dynamic coefficient is monotonic in the saturation S for any viscosity ratio.

5.1.3. Effect of a dynamic contact angle. Now, we consider the effect of
a dynamic contact angle model. As we expect the similar qualitative behaviour for
different dynamic contact angle models, we restrict the discussion to the model

θ(u) = arccos(max(min(cos(θs) + ηCau, 1),−1)),(5.8)

which is the molecular kinetic theory model from [11, 15, 9, 10] restricted to the
possible range [0, π]. Here, the parameter η ≥ 0 models the effective friction at the
contact point leading to a dynamic contact angle. For comparability, we fix the static
contact angle θs = π/3 and all the other parameters as in Table 5.1. Note that for
any η ≥ 0, the differential algebraic system (5.3) has a unique solution, since cosine
is monotonic decreasing on [0, π].

In contrast to the previous examples, the dynamic contact angle model does not
affect the dynamic coefficient τ , but has an impact on the local capillary pressure
pc,loc and the phase-pressure difference 〈pI〉I − 〈pII〉II. Recall that the local capillary
pressure is given in this case by (4.9). In particular, its dynamic part is proportional
to the parameter η. Hence, the interface position γ1 moves slower when the parameter
η increases, see Figure 5.5. Note that the total flux q is constant, so that γ1 is linear
in time. Therefore, the local capillary pressure and the phase-pressure difference
are constant over S (due to M = 1), so that we only show the dependence on η in
Figure 5.5.
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Figure 5.6. The total flux q (top-left) is linear for the static and dynamic contact angle
model, while being zero for some time for the hysteretic model. The interface position γ1 moves
accordingly (top-right). In case of the hysteretic model, it is at rest, when the local capillary pressure
pc,loc (bottom-left) lies in between the (static) capillary pressures for drainage and imbibition, i.e.,
pc,loc is multi-valued at the maximal reached saturation. For the dynamic models, pc,loc at the
maximal saturation is exactly the static capillary pressure. The phase-pressure difference 〈pI〉I −
〈pII〉II (bottom-right) shows the same qualitative behaviour.

5.1.4. Effect of a hysteretic contact angle. Finally, we consider the effect
of a hysteretic contact angle model and compare it to the static and dynamic ones.
As before we use the dynamic contact angle model (5.8) with static contact angle
θs = π/3. For the hysteretic contact angle model, the advancing and receding contact
angles (with respect to fluid I) are chosen θa = π/4 and θr = 5π/12, respectively.
Together with the same dynamic contact angle model away from u = 0, this yields

ζ(a) =


a−cos(θr)

ηCa
if a < cos(θr),

a−cos(θa)

ηCa
if a > cos(θa),

0 otherwise.

(5.9)

Recall that ζ is the inverse of cos θ. We consider a drainage and imbibition cycle by
choosing the time-dependent inlet pressure pin(t) = 3 − t, and stop the simulations
when the interface position returns to the inlet. The other parameters are taken
from Table 5.1.

As in the dynamic case, we observe that the movement of the interface position
γ1 is slower when the parameter η is increased, see Figure 5.6 (top). While the
total flux q is linear for the static and dynamic contact angle model, so that γ1 is
quadratic in time, the hysteretic model leads to a constant interface position when
θa ≤ θ ≤ θr. Therefore, the local capillary pressure pc,loc and the phase-pressure
difference 〈pI〉I − 〈pII〉II at the maximal reached saturation is multi-valued taking all
values between the (static) drainage and imbibition capillary pressures, see Figure 5.6
(bottom). On the other hand, for the dynamic contact angle model, pc,loc and 〈pI〉I−
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Parameter Value

Capillary number Ca 1/2
Contact angle θ π/3
Slip length λ 1/6
Viscosity ratio M 1
Initial interface position γ1|t=0 0
Inlet pressure pin 12

Table 5.2
Standard parameters for the case of varying width.

1

1

x1

x2

Figure 5.7. Velocity profile in the thin strip of varying width (λ = 1/6).

〈pII〉II at the maximal saturation are given by the static capillary pressure, since ∂tS =
0. Furthermore, the hysteresis leads to higher deviations from the static capillary
pressure and thus a smaller maximal saturation. Finally, note that pin is linear and
reaches pconst

c,loc at t = 2 such that all curves with the dynamic contact angle model are
symmetric. Since θa and θr have the same distance from θs, the same holds in the
hysteretic cases.

5.2. Constricted “pore throat”. Next, we consider a strip with varying width

w(x1) = 2/3 + cos(2πx1)/3,

which represents a constricted “pore throat”. As before, we shortly discuss the velocity
and pressure distribution of the two phases as well as the movement of the interface,
before proceeding with the detailed discussion of the effect of the slip length, of the
viscosity ratio and of a dynamic and a hysteretic contact angle model, varying each
individually, while fixing all other parameters as given in Table 5.2. Note that we
choose a static contact angle such that fluid I is non-wetting.

While the overall trend is similar to the previous case with constant width, we
additionally observe here a strong impact of the geometry on the flow behaviour
and thus on the effective quantities. In contrast to the constant-width case, the
local capillary pressure pc,loc now depends on the saturation due to the constriction,
see Figure 5.9. Analogously, the phase-pressure difference 〈pI〉I − 〈pII〉II varies in the
saturation.

The solution in the bulk domains (3.23)–(3.26) for this geometry then reads

um,1(t,x) = 9q(t)
(c(x1))2 + 5c(x1) + 6− x2

2

(c(x1) + 2)2(2c(x1) + 7)
,

um,2(t,x) = ε18πq(t) sin(2πx1)
(

18(c(x1)+3)x3
2

(c(x1)+2)3(2c(x1)+7)2 − (2(c(x1))2+12c(x1)+19)x2

(c(x1)+2)2(2c(x1)+7)2

)
,
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Figure 5.9. The local capillarity pressure pc,loc increases for saturations below S = 0.5, and
decreases thereafter. The dynamic coefficient τ shows an analogous behaviour. This is a result of
the symmetric constriction of the thin strip.

for m ∈ {I, II}, where c(x1) := cos(2πx1), see also Figure 5.7, while

pI(t,x) = 3
2+c(γ1(t)) + 9q(t) sin(2πx1)

π(c(x1)+2) +
24q(t)

(
πH(0.5−x1)−arctan

(√
5

3 tan(πx1)
))

π
√

5
,

for x1 < γ1(t), and

pII(t,x) = 9q(t) sin(2πx1)
π(c(x1)+2) +

24q(t)
(
πH(0.5−x1)−arctan

(√
5

3 tan(πx1)
))

π
√

5
,

for x1 > γ1(t), where H denotes the Heaviside graph, see also Figure 5.8. The first
velocity component is higher where the width is reduced, while the second component
adjusts to the changes in width to maintain the incompressibility, see Figure 5.7.
Note that the second velocity component is of order ε due to the different scaling.
Accordingly, the pressure gradients depend on the local width and are steeper around
the constriction in the middle. This leads to the s-shaped pressure profiles instead of
the linear ones in the constant-width case.

For fixed inlet velocity uin,1 = 4/3 − x2
2, i.e., for q ≡ 1, the pressure solutions at

several times are depicted in Figure 5.8 together with the evolution of the interface
position γ1(t), which is given implicitly by t = 2γ1(t)/3 + sin(2πγ1(t))/(6π). Note
that the interface position γ1 moves faster in the vicinity of the constriction, since the
average velocity u = q/w is higher around the constriction, cf. Figure 5.7. Further-
more, the movement is very similar to the one obtained with constant inlet pressure
pin ≡ 12. Hence, we restrict the following discussion to this inlet pressure condition.
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Figure 5.11. The dynamic coefficient τ decreases for increasing slip length λ (left). It is
non-monotonic in the saturation. The resulting phase-pressure difference 〈pI〉I−〈pII〉II is also non-
monotonic, but almost the same for all slip lengths (right).

Note that this larger inlet pressure is necessary to obtain a similar total flux as in the
constant-width case, since the width is reduced.

For this geometry, we still can derive relations for the effective quantities obtained
in subsection 4.2. We obtain for the saturation

S = γ1 + 1
4π sin(2πγ1), ∂tS = 3

2q.

Since this function S(γ1) has no analytical inverse, there is no closed-form expression
for the local capillary pressure pc,loc (4.7) nor for the dynamic coefficient τ (4.8). Their
numeric approximations are depicted in Figure 5.9. Both have a peak at S = 0.5,
where the interface passes the position x1 = 0.5 with the smallest width. For the local
capillary pressure this results from the reciprocal dependence on the local width, while
the dynamic coefficient is symmetric due to the symmetric wall and the viscosity ratio
M = 1. Note that the dynamic effects are much stronger than in the constant-width
setting due to the reduced width, which requires larger pressure gradients to maintain
the flow. Hence, we conclude that the wall shape has a significant impact, especially
on the dynamic effects.

5.2.1. Effect of the slip length. We begin the investigation for various slip
lengths λ. As in the previous, constant-width case, the movement of the interface
position γ1 is faster when the slip length is increased, see Figure 5.10. However, the
total flux q is drastically reduced while the interface passes through the constriction
due to the higher capillary pressure, cf. Figure 5.10.
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Figure 5.13. The dynamic parameter τ increases for increasing viscosity ratio M (left). It
is non-monotonic in the saturation. The resulting phase-pressure difference 〈pI〉I − 〈pII〉II is also
non-monotonic, but almost the same for all moderate viscosity ratios (right).

The dynamic coefficient τ is lower when the slip length increases, as shown in Fig-
ure 5.11. In contrast to the constant-width case, it is non-monotonic in the saturation,
and maximal around S = 0.5, i.e., when the interface passes through the constriction
around x1 = 0.5. Note that the combination of higher velocity with lower dynamic
coefficient leads to almost no changes in the phase-pressure difference 〈pI〉I−〈pII〉II for
all slip lengths, see Figure 5.11.

5.2.2. Effect of the viscosity ratio. Next, we consider the effect of the vis-
cosity ratio M. As in the previous, constant-wall case, the total flux q is smaller when
the viscosity ratio M increases, see also Figure 5.12. Especially at early times t, one
can observe large total fluxes q, when the viscosity ratio is very small (M ≤ 0.1), since
the strip is filled with the extremely mobile fluid II. On the other hand, the total flux
is reduced while the interface passes through the constriction, but this effect is very
small compared to the effect of viscosity for M < 1. As before, the solutions converge
for M → 0 towards the simplified, unsaturated flow model as discussed in subsec-
tion 3.3, see Figure 5.12. Note that we use γ1

∣∣
t=0

= 10−3 when M = 0 to avoid the
degeneration of the interface system (3.53) and (3.54).

The dynamic coefficient τ becomes larger for small saturations S, if the viscosity
ratio is larger (M > 1), and vice versa for M < 1, as shown in Figure 5.13. The rapid
change close to S = 0.5 is due to the strong influence of the region around x1 = 0.5,
where the thin strip has its minimal width. Note that for small viscosity ratio M ≤ 0.1
and saturation below 0.4, the dynamic coefficient is almost zero. Furthermore, we
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Figure 5.14. The total flux q (left) decreases for higher values of η, since the (dynamic) local
capillary pressure increases. Accordingly, the interface position γ1 moves slower (right). Due to the
constriction, the effect is maximal for γ1 = 0.5.

0.5 1

2

4

6

S

pc,loc
η = 0

η = 0.25

η = 0.5

η = 0.75

η = 1

0.5 1

6

8

10

S

〈pI〉I − 〈pII〉II

Figure 5.15. The local capillary pressure pc,loc increases for increasing dynamic contact angle
coefficient η (left). It attains its maximum at S = 0.5, when the interface passes the minimal width.
The resulting phase-pressure difference 〈pI〉I − 〈pII〉II shows the same behaviour (right).

observe here non-monotonic behaviour of the dynamic coefficient τ for every viscosity
ratio, while it is monotonic in the constant-width case. This is due to the interplay
between the constricted geometry and the nonlinear dynamic effect (4.8). Finally,
note that the combination of higher velocity with lower dynamic coefficient leads
to almost no changes in the phase-pressure difference 〈pI〉I − 〈pII〉II for all moderate
viscosity ratios, see Figure 5.13. Only for a very small viscosity ratio M ≤ 0.1, the
phase-pressure difference is slightly lower for saturations between 0 and 0.5.

5.2.3. Effect of a dynamic contact angle. We consider the effect of a dy-
namic contact angle model. As for the constant-width case, we use (5.8) with θs =
π/3. The total flux q is smaller when η is increased, see Figure 5.14. This effect is
amplified while the interface passes through the constriction.

Although the total flux is smaller, the local capillary pressure pc,loc and the phase-
pressure difference 〈pI〉I − 〈pII〉II increase for increasing η, see Figure 5.15. The max-
imum is attained at S = 0.5, when the interface passes the minimal width. There,
the dynamic effect is also the highest. Note that the curves for η = 0.75 and η = 1
partly coincide because the dynamic contact angle reaches π in both cases. In a lab-
oratory experiment, this could lead to instabilities and the formation of bubbles or
a thin residual film. However, that such behaviour is beyond the scope of the model
presented here.
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Figure 5.16. The total flux q (top-left) decreases faster when the interface passes through the
constriction. In case of the hysteretic contact angle model the interface position γ1 (top-right) stops
in the constriction when the local capillary pressure pc,loc (bottom-left) lies in between the (static)
capillary pressures for drainage and imbibition, whereas pc,loc at the maximal saturation is exactly
the static capillary pressure for the dynamic models. The phase-pressure difference 〈pI〉I − 〈pII〉II
(bottom-right) shows the same qualitative behaviour.

5.2.4. Effect of a hysteretic contact angle. Finally, we consider the effect
of a hysteretic contact angle model and compare it to the static and dynamic ones.
As in the constant-width case, we use the dynamic contact angle model (5.8) with
θs = π/3 and the hysteretic contact angle model (5.9) with θa = π/4 and θr = 5π/12.
We consider a drainage and imbibition cycle by choosing the time-dependent inlet
pressure pin(t) = 9− 4t, and stop the simulations when the interface position returns
to the inlet. The other parameters are taken from Table 5.2.

As before, the total flux q decreases faster, when the interface passes through
the constriction, see Figure 5.16 (top). Note that the higher capillary pressure when
passing the constriction counteracts the drainage, while it increases the imbibition
speed. This results in a more negative velocity. In case of the hysteretic contact angle
model, the interface position γ1 stops in the constriction, while the pressure lies in
between the (static) capillary pressures for drainage and imbibition, so that the local
capillary pressure pc,loc and the phase-pressure difference 〈pI〉I−〈pII〉II are multi-valued
at the maximal saturation. In contrast, the dynamic model yields a direct switching
between drainage and imbibition, when pc,loc is exactly the static capillary pressure
(at the maximal saturation), see Figure 5.16 (bottom). Hence, hysteresis also leads
to higher deviations from the static capillary pressure and thus a smaller maximal
saturation.

6. Conclusion. We have formally derived the asymptotic solution for the flow
of two immiscible fluids in a two-dimensional thin strip of varying width, where the
fluid-fluid interface is treated as a free boundary. The obtained effective models form
a system of differential algebraic equations for the interface position and the total



34 S. B. LUNOWA, C. BRINGEDAL, AND I. S. POP

flux, and are applicable to a wide range of viscosity ratios M, of slip lengths λ, as well
as contact angle models. The resulting effective relations are a Darcy-type equation
for the local flow, and a capillary pressure - saturation relationship involving dynamic
effects.

We have discussed the effects of a varying pore width, of the viscosity ratio, of the
slip length as well as of having a dynamic and a hysteretic contact angle law through
numerical experiments. In particular, the results for a varying pore width show that
the geometry has a large influence on the effective quantities and their behaviour.
While dynamic effects occur even for a static contact angle model, hysteresis in the
capillary pressure is only present when a hysteretic contact model is used.

The presented models and effective relations can be generalized to asymmetric as
well as tube-like three-dimensional domains with heterogeneities in the contact angle.
Furthermore, rough walls of type wε(x1) = w(x1) + εw1(x1/ε) +O(ε) would strongly
affect the shape and position of the interface. This needs to be investigated in the
future. Our future work will focus on the radial-symmetric case in three dimensions
including the effect of outer forces such as gravity. Such three-dimensional models can
be further used in pore-network models or for upscaling in a bundle-of-tubes model.
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